Answer: ₉₈²⁵³Cf
253 is a superscript to the left of the symbol, Cf, which represents the mass number, and 98 is a subscript to the left of the same symbol, which represents the atomic number.
Explanation:
1) The alpha decay equation shows that the isotope Fm - 257, whose nucleus has 100 protons and 157 neutrons, emitted an alpha particle (a nucleus with 2 protons and 2 neutrons).
2) Therefore:
i) the mass number decreased in 4, from 257 to 257 - 4 = 253.
2) the atomic number decreased in 2, from 100 to 100 - 2 = 98.
3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253.
4) The item that completes the given alpha decay reaction is:
₉₈²⁵³ Cf.
5) The complete alfpha decay reaction is:
₁₀₀²⁵⁷ Fm → ₉₈²⁵³Cf + ₂⁴He
You can verify the mass balance:
257 = 253 + 4, and
100 = 98 + 2
We have to solve this question using the stoichiometry of the reaction:
The equation of the reaction is;
According to the question;
Number of moles of CO2 released = 21.3 g/44 g/mol = 0.48 moles
From the stoichiometry of the reaction:
Since;
24 moles of CO2 released 15,026 KJ
0.48 moles of CO2 will release 0.48 * 15,026/24
= 301 KJ of heat.
brainly.com/question/6901180
Answer:
Explanation:
Ionization energy:
It is the minimum amount of energy required to remove the electron from isolated gaseous atom to make the ion.
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell.
When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required. Where as,
When we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
In this problem, we need to use the ideal gas law. The following is the formula used in ideal gas law: PV = nRT, where n refers to the moles and R is the gas constant.
Given
P = 10130.0 kPa
V = 50 L
T = 300 degree celcius + 273.15 = 573.15 K
R = 8.314 L. kPa/K.mol
Solution
To get the moles which represent the "n" in the formula, we need to rearrange the equation.
PV = nRT PV
---- ------ ---> n = --------
RT RT RT
10130.0 kPa x 50 L
n= ---------------------------------------------
8.314 L. kPa/K.mol x 573.15 K
506,500
= ----------------------------
4,765.17 mol K
=106.29 mol Ar
So the moles of argon gas is 106.29 moles