The half-life of any substance is the amount of time taken for half of the original quantity of the substance present to decay. The half-life of a radioactive substance is characteristic to itself, and it may be millions of years long or it may be just a few seconds.
In order to determine the half-life of a substance, we simply use:
t(1/2) = ln(2) / λ
Where λ is the decay constant for that specific isotope.
<span>The reaction is N2 + 3H2 -> 2NH3
So the amount of NH3 formed is 2/3 of the amount of H2 = 2/3 * 13.7 = 9.13 Liters.</span><span>The answer is 9.13
</span>
Answer :]
A.)Calculate the mass of ammonium sulfate that would be obtained by reacting with ammonia acid.
<em>Correct me if i'm wrong :]</em>
In an acidic solution, the concentration of H+ is greater than the concentration of OH-. The pH will be less than 7.
In a basic solution, the concentration of OH- is greater than the concentration of H+. The pH will be greater than 7.
In a neutral solution, the concentration of H+ ions to OH-ions will be equal, and will therefore have a pH of 7. (This is due to water autoionization, which we usually ignore because it is small in other circumstances.)
Answer: C = 0.014M
Explanation:
From n= m/M= CV
m =43.5 M= 148, V=850ml
43.5/148= C× 0.85
C= 0.35M
Applying dilution formula
C1V1=C2V2
C1= 0.35, V1= 25ml, C2=?, V2= 600ml
0.35× 25 = C2× 600
C2= 0.014M