Answer:
See explanation.
Explanation:
Hello,
In this case, we say that chemical reactions are governed by the law of conservation of mass, which states that matter cannot be neither created nor destroyed by transformed, for that reason, we need to balance chemical reactions in order to ensure all the atoms to be in the same quantity at both reactants and products.
Moreover, equilibrium is defined as such condition at which the concentration of both reactants and products stop changing over the time so they become constant as well as their null reaction rate.
A widely acknowledged reaction is the HABER one which consists on the synthesis of ammonia by using elemental nitrogen and hydrogen:
In such reaction, we have two nitrogens at both reatants and products and six hydrogens at at both reatants and products for us to obey the law of conservation of mass. Furthermore, as the time goes by, nitrogen reacts with hydrogen, nonetheless, they do not react indefinitely, they have a limit that is equilibrium, so their moles stop being consumed and remain unchanged as well as the produced moles of ammonia.
Best regards.
Answer:
O.
Explanation:
- The element which is oxidized is the element that losses electrons and its oxidation state be more positive.
- The element which is reduced is the element that gain electrons and its oxidation state be more negative.
<em> O goes from 0 to -2, so, it is the element that is reduced.</em>
Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL
Answer:
15m
Explanation:
vi = 0
vf = 10
a = -9.8
10^2 = 0 + 2(-9.8)(x2-x1) = -5.1
20-5.1 = 14.9m = 15m
Answer:
The amount of space an object occupies.
Explanation: