1.2*10^24# atoms of chlorine
Explanation:
Chlorine gas (#Cl_2#) has two atoms of elemental chlorine in a molecule, so:
#1# mol of #Cl_2# have #6*10^23# molecules of #Cl_2#
#1# molecule of #Cl_2# have #2# atoms per molucule
Then #2*6*10^23 = 1.2*10^24# atoms of chlorine in a mol of chlorine gas
Answer:
2
Explanation:
to separate objects or ideas into group based on ways they are alike
Answer:
(edit: nvm I figured it out, here is the answer)
Explanation:
Answer:
strength = 10⁻²/10⁻³ = 10 times more acidic
Explanation:
1. A solution with a pH of 9 has a pOH of
pH + pOH = 14 => pOH = 14 - pH = 14 - 9 = 5
2. Which is more acidic, a solution with a pH of 6 or a pH of 4?
pH of 4 => Higher [H⁺] = 10⁻⁴M vs pH of 6 => [H⁺] = 10⁻⁶M
3. How many times more acidic is a solution with a pH of 2 than a solution with a pH of 3?
soln with pH = 2 => [H⁺] = 10⁻²M
soln with pH = 3 => [H⁺] = 10⁻³M
strength = 10⁻²/10⁻³ = 10 times more acidic
4. What is the hydrogen ion concentration [H + ] in a solution that has a pH of 8?
[H⁺] = 10^-pH = 10⁻⁸M
5. A solution has a pOH of 9.6. What is the pH? (Use the formula.)
pH + pOH = 14 => pH = 14 - 9.6 = 4.4
The mass percent lithium hydroxide in the mixture with potassium hydroxide, calculated from the equivalence point in the titration of HCl with the mixture, is 19.0%.
The mass percent of lithium hydroxide can be calculated with the following equation:
(1)
Where:
(2)
We need to find the mass of LiOH.
From the titration, we can find the number of moles of the mixture since the number of moles of the acid is equal to the number of moles of the bases at the equivalence point.



Since mol = m/M, where M: is the molar mass and m is the mass, we have:
(3)
Solving equation (2) for m_{KOH} and entering into equation (3), we can find the mass of LiOH:
Solving for
, we have:

Hence, the percent lithium hydroxide is (eq 1):
Therefore, the mass percent lithium hydroxide in the mixture is 19.0%.
Learn more about mass percent here:
I hope it helps you!