The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g
Answer:- Formula of the hydrate is
and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:

= 

= 
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is
and the name of the hydrate is Iron(III)sulfate pentahydrate.
Explanation:
Crystallography. an arrangement in space of isolated points (lattice points ) in a regular pattern, showing the positions of atoms, molecules, or ions in the structure of a crystal.
If an atom experiences sufficient thermal activation, it can move to a neighboring lattice position.4 If the vibration frequency of the atom is v and the atom has Z nearest neighbors, the total number of jump attempts is vZ. However, only a small fraction of the attempts will be successful, with a probability depending on the ratio between the necessary activation energy for a single jump QD and the thermal activation kBT. The effective jump frequency ΓD is then
(5.6)
With each successful jump, the atom travels one atomic distance λ and the total traveling distance in unit time is thus ΓDλ. Substituting the jump frequency ΓD into the expression for the root mean square displacement of a random walker [equation (5.5)] and using the spatial coordinate r leads to
Answer:
All are correct
Explanation:
This might be a little deceptive. The question shows H, O and N which would designate ELEMENTS.
However, all of these can also be considered compounds and molecules as well. BUT, they are H₂, O₂ and N₂ when they are molecules and compounds.
So it depends on the whether the question is being literal or not.