Answer:
So the value of height that separates the bottom 10% of data from the top 90% is 30.3.
If the score is lower than 30.3 we consider this score as risk averse
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested in the bottom 10% of the data.
For this part we want to find a value a, such that we satisfy this condition:
(a)
(b)
Both conditions are equivalent on this case. We can use the z score again in order to find the value a.
As we can see on the figure attached the z value that satisfy the condition with 0.1 of the area on the left and 0.9 of the area on the right it's z=-1.28. On this case P(Z<-1.28)=0.1 and P(z>-1.28)=0.9
If we use condition (b) from previous we have this:
But we know which value of z satisfy the previous equation so then we can do this:
And if we solve for a we got
So the value of height that separates the bottom 10% of data from the top 90% is 30.3.
If the score is lower than 30.3 we consider this score as risk averse
Answer:
??
Step-by-step explanation:
That's very interesting. I had never thought about it before.
Let's look through all of the ten possible digits in that place,
and see what we can tell:
-- 0:
A number greater than 10 with a 0 in the units place is a multiple of
either 5 or 10, so it's not a prime number.
-- 1:
A number greater than 10 with a 1 in the units place could be
a prime (11, 31 etc.) but it doesn't have to be (21, 51).
-- 2:
A number greater than 10 with a 2 in the units place has 2 as a factor
(it's an even number), so it's not a prime number.
-- 3:
A number greater than 10 with a 3 in the units place could be
a prime (13, 23 etc.) but it doesn't have to be (33, 63) .
-- 4:
A number greater than 10 with a 4 in the units place is an even
number, and has 2 as a factor, so it's not a prime number.
-- 5:
A number greater than 10 with a 5 in the units place is a multiple
of either 5 or 10, so it's not a prime number.
-- 6:
A number greater than 10 with a 6 in the units place is an even
number, and has 2 as a factor, so it's not a prime number.
-- 7:
A number greater than 10 with a 7 in the units place could be
a prime (17, 37 etc.) but it doesn't have to be (27, 57) .
-- 8:
A number greater than 10 with a 8 in the units place is an even
number, and has 2 as a factor, so it's not a prime number.
-- 9:
A number greater than 10 with a 9 in the units place could be
a prime (19, 29 etc.) but it doesn't have to be (39, 69) .
So a number greater than 10 that IS a prime number COULD have
any of the digits 1, 3, 7, or 9 in its units place.
It CAN't have a 0, 2, 4, 5, 6, or 8 .
The only choice that includes all of the possibilities is 'A' .