Answer:
The mol fraction of cyclohexane in the liquid phase is 0.368
Explanation:
Step 1: Data given
Mass of cyclohexane = 25.0 grams
Mass of 2-methylpentane = 44.0 grams
Temperature = 35.0 °C
The pressure of cyclohexane = 150 torr
The pressure of 2-methylpentane = 313 torr
The pressure we only need for the mole fraction in gas phase.
Step 2: Calculate moles of cyclohexane
Moles cyclohexane = mass cyclohexane / molar mass
Moles cyclohexane = 25.0 g / 84 g/mol = 0.298 mol of cyclohexane
Step 3: Calculate moles of 2-methylpentane
Moles = 44.0 grams / 86 g/mol = 0.512 mol of 2-methylpentane
Step 4: Calculate mole fraction of cyclohexane in the liquid phase
Mole fraction of C6H12:
0.298 / (0.298 + 0.512) = 0.368
The mol fraction of cyclohexane in the liquid phase is 0.368
I think it is a but i might be rong
Answer: C
Explanation:
Sunlight
6 CO2 + 6 H2O --------------> C6H12O6 + 6 O2
Chlorophyll
Carbon(IV)oxide Water Glucose Oxygen
If it’s a negative number and a positive it might be 1.4
To begin with, the equation given is not correct.
Correct equation is : CaCO3 + HCl ---> CaCl2 + H2O + CO2
It's CaCl2 not CaCl because Ca has a valency of 2
LHS RHS
CaCO3 + HCl ---> CaCl2 + H2O + CO2
First of all, to balance the equation you must look at the number of atoms on each side of the equation.
we have 2 H on the RHS and 1 H on the LHS. So, we put a 2 on the LHS
CaCO3 + 2HCl ---> CaCl2 + H2O + CO2
Check for the LHS: 1 Ca, 1 C, 3 O, 2 H & 2 Cl on the LHS
Now check for the RHS: 1 Ca, 2 Cl, 2 H, 1 C & 3 O
Hope it helped!