Answer:
a = - 0.3376 g's
Explanation:
The sports car has a constant speed when travelling. Covered 164 m in 13.77 s. Thus, speed = 164/13.77 m/s
It brakes and now comes to a stop in 3.6 s.
Thus final velocity = 0 m/s
Formula for acceleration is;
a = (v - u)/t
a = (0 - (164/13.77))/3.6
a = -3.308 m/s²
In terms of g's", where 1.00 g = 9.80 m/s², we have;
a = -3.308/9.8 g's
a = - 0.3376 g's
Answer:
<em>The balloon is 66.62 m high</em>
Explanation:
<u>Combined Motion
</u>
The problem has a combination of constant-speed motion and vertical launch. The hot-air balloon is rising at a constant speed of 14 m/s. When the camera is dropped, it initially has the same speed as the balloon (vo=14 m/s). The camera has an upward movement for some time until it runs out of speed. Then, it falls to the ground. The height of an object that was launched from an initial height yo and speed vo is

The values are


We must find the values of t such that the height of the camera is 0 (when it hits the ground)


Multiplying by 2

Clearing the coefficient of 

Plugging in the given values, we reach to a second-degree equation

The equation has two roots, but we only keep the positive root

Once we know the time of flight of the camera, we use it to know the height of the balloon. The balloon has a constant speed vr and it already was 15 m high, thus the new height is



I'm pretty sure that you have mass. When it comes to gravity, anything that has mass behaves exactly like anything else that has mass. Any two of them are attracted to each other, with a force that's proportional to the product of their masses, and inversely proportional to the square of the distance between them.
Now, if you have mass, then you have weight ... it's the answer you give when somebody asks "How much do you weigh ?". That's the force of gravity between you and the Earth, pulling you toward the center of the Earth. But it doesn't stop there. There's also a force of gravity pulling the Earth toward the center of you. The strength of it is EQUAL to your weight.
Your weight on Earth is EQUAL to the Earth's weight on YOU !
Answer:
The correct option is;
D. There is not enough information to answer this question
Explanation:
The universal gravitational constant = 6.67408 × 10⁻¹¹ 3³/(kg·s²)
For an in between distance of 1 m and equal masses of 60 kg, we have;

The gravitational attraction ≈ 2.403 × 10⁻⁷ N, which does not correspond with the answers, therefore, the best option is that there is not enough information to answer this question.