1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
3 years ago
5

Jennifer is making a collage using her favorite photos. She wants to cover the collage with something that allows her to see the

photos, but also protects them from dust. Which material should Jennifer use?
a material that absorbs light
a transparent material
an opaque material
a material that reflects light
Physics
2 answers:
Neko [114]3 years ago
7 0

Answer: a transparent material

Explanation:

Materials that do not transmit light are known as opaque objects. These objects absorb all the light.

Transparent material transmit all the light. Thus, we can see through the transparent material. So, Jennifer must cover the collage with a transparent material that allows her to see photos thereby protecting them from dust.

Karolina [17]3 years ago
4 0
B.) A transparent material
You might be interested in
Help for physical science u4 limiting reactants
Yuliya22 [10]
The reactants are on the left and the products are on the right of the equation
3 0
3 years ago
Who reported four “element” classifications, but included some substances that were combinations of elements rather than true el
notsponge [240]
Antoine-Laurent Lavoisier was the first person to report the four element classification system but also ended up including some compounds rather than elements.
7 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
2 years ago
Where is Chemical Energy in a material stored ?
Sphinxa [80]
It is stored in the bonds between atoms
6 0
3 years ago
If a magnet is broken into two pieces, what happens to the magnetic poles?
Nostrana [21]

Answer:

The second is correct.

Explanation:

Try with a magnet and experiment. You'll find out

6 0
2 years ago
Read 2 more answers
Other questions:
  • You have just landed on planet x. you take out a 250-g ball, release it from rest from a height of 12.0 m, and measure that it t
    13·2 answers
  • Calculate the electric field at the center of a square 46.4 cm on a side, if one corner is occupied by a +42.0 µc charge and the
    11·1 answer
  • Acoustic encoding is the encoding of <br> images<br><br> sounds<br><br> meanings<br><br> acronyms
    8·2 answers
  • When a steady direct current flows through a coil, the only opposition to the flow of current is the resistance of the wire from
    11·1 answer
  • A pencil rolls horizontally of a 1 meter high desk and lands .25 meters from the base of the desk. How fast was the pencil rolli
    12·1 answer
  • Hair can be used to measure humidity.<br> a. True<br> b. False
    11·1 answer
  • A 1640 kg merry-go-round with a radius of 7.50 m accelerates from rest to a rate of 1.00 revolution per 8.00 s. Estimate the mer
    5·1 answer
  • What is the mass of an object travelling at 25 m/s with a kinetic energy of 3775 J?
    14·1 answer
  • How long does it for a car to cover 100 miles at 60 mi/hr? Use one of the following equations:
    11·1 answer
  • Gabrielle has just upgraded her oil-burning furnace. Her new furnace takes cool air from outside and passes it through the heat
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!