<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
It’s positive when you use energy for work
Answer:- oxygen.
Explanations:- The electronic configuration is given and we are asked to figure out the electrically neutral atom that will have the electron configuration,
.
The sum of electrons for this electron configuration is 8. If we look at the periodic table then 8 is the atomic number of oxygen.
So, the electrically neutral atom for the given electron configuration is oxygen.
Well people say the world's going to end soon so people need to find another planet to live on they're thinking about Mars at the moment
Answer:
it depends upon a his body which antigen is present
Explanation:
it depends on that person not on their parents