Answer:
Element Symbol Atomic weight Atoms Mass percent
Carbon C 12.0107 1 23.7894
Hydrogen H 1.00794 3 5.9892
Chlorine Cl 35.453 1 70.2213
Explanation:
Answer:
See explanation
Explanation:
The cold drink chiller is a cold substance which is inserted into a bottle of drink which contains warm liquid particles at a particular temperature.
Once the drink chiller is inserted, the liquid molecules around the drink chiller become cooler, denser and sink away from the drink chiller. Other warmer, less dense molecules of the liquid drink now replaces them around the drink chiller.
A convection current is thus set up for as long as the drink chiller is working.
Answer:
3.18 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.985 atm
- Initial volume (V₁): 3.65 L
- Final pressure (P₂): 861.0 mmHg
Step 2: Convert P₁ to mmHg
We will use the conversion factor 1 atm = 760 mmHg.
0.985 atm × 760 mmHg/1 atm = 749 mmHg
Step 3: Calculate the final volume of the gas
Assuming ideal behavior and constant temperature, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 749 mmHg × 3.65 L/861.0 mmHg = 3.18 L
Answer:
6H20 represents six molecules of water
Answer:
0.00370 g
Explanation:
From the given information:
To determine the amount of acid remaining using the formula:
where;
v_1 = volume of organic solvent = 20-mL
n = numbers of extractions = 4
v_2 = actual volume of water = 100-mL
k_d = distribution coefficient = 10
∴




Thus, the final amount of acid left in the water = 0.012345 * 0.30
= 0.00370 g