Answer:
The reaction is endothermic
Part A: Yes because there is an immediate reaction of bubbling vigorously.
Part B: It releases energy because when the compounds are added together they are immediately releasing it by bubbling and turning cold.
Part C: Yes because the liquids inside when combined give off coldness that makes the liquid temperature decrease to use this chemical reaction could definitely be used to keep something cold
Explanation:
Answer:
b. E = 2,28V
Explanation:
The maximum work is the same than ΔG. As ΔG could be written as:
ΔG = nFE <em>(1)</em>
Where n is moles of electrons transferred, F is faraday constant (96485 J/Vmol) and E is the voltage of the cell.
For the reaction:
CH₃OH(l) + ³/₂O₂(g) → CO₂(g) + 2H₂O(l)
The oxidation state of C in CH₃OH is -2 but in CO₂ is +4, that means transferred electrons are +4 - -2 = <em>6e⁻</em>
Replacing in (1):
1320x10³ J = 6mol e⁻×96485J/Vmol×E
<em>E = 2,28V</em>
<em></em>
I hope it helps!
Answer:
3.8 x 10⁵
Explanation:
For the equilibrium : 3NO(g) ⇌ N2O(g) + NO2(g), the equilibrium constant in the terms of the concentrations of the gases in mol/L is
Kc = (NO) (N2O)/ (NO) ³ where (NO), (N2O) , (NO2) are the concentrations of the gases in mol/L . So
K= (x mol/ 1 L) (x mol/1L) / (7.5 x 10⁻⁶ mol /1 L) ³
x = mol of NO and NO2 at equilibrium
we have that
K = x²/ 7.5 x 10⁻⁶ = 1.9 x 10¹⁶
x = √ (7.5 x 10⁻⁶ x 1.9 x 10¹⁶) = 3.8 x 10⁵
∴ (N2O) = 3.8 x 10⁵
White crystalline salt contains an ionic bond because it is formed due to the transfer of electrons from one atom to another.