Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

Answer:
2. 
3. 
Explanation:
Hello there!
2. In this case, we can evidence the problem by which volume and temperature are involved, so the Charles' law is applied to:

Thus, considering the temperatures in kelvins and solving for the final volume, V2, we obtain:

Therefore, we plug in the given data to obtain:

3. In this case, it is possible to realize that the 3.7 moles of neon gas are at 273 K and 1 atm according to the STP conditions; in such a way, considering the ideal gas law (PV=nRT), we can solve for the volume as shown below:

Therefore, we plug in the data to obtain:

Best regards!
<span>#1 is air radon, #2 is x-ray, #3 is ground, #4 is cosmic radiation, #5 is TV tube, #6 is weapons test fallout . That's all I got hope I helped!</span>
Answer: It is important for an equation to be balanced because if it is not then the reactants won't match the products.
Explanation: I don't know if you will understand this but here:
Let's say you're cooking eggs, you're reactants so to speak would be 3 eggs and 1 tablespoon of oil so you put it together using heat and a pan. Your products have to match what you have in the beginning. You cannot have an equation that looks like this
Reactants = 3eggs + 1Tbsp oil ---pan/heat---> 6eggs + 1 cup of oil
You cannot get something from what you don't have. The number of how much of an element you have must be the same of both sides of the equation.