D.) black text on a yellow background. There is much more contrast in the colors black and yellow than the other choices.
Answer:
80.1 grams
Explanation:
Find the molar mass of CH3OH first by using the periodic table values.
12.011 g/mol C + (1.008*3 g/mol H) + 15.999g/mol O + 1.008 g/mol H
=32.042 so that is the molar mass
Now that you have 2.50 moles of CH3OH, you can calculate the mass in g
2.50molCH3OH * (32.042g CH3OH / 1 mol CH3OH) = 80.105
32.042g / 1 mol is the same as 32.042 g/mol
Since there are 3 sig figs in the problem (2.50 has 3 sig figs), you round to 80.1 g CH3OH
Answer : The value of
for
is
.
Solution : Given,
Solubility of
in water = 
The barium carbonate is insoluble in water, that means when we are adding water then the result is the formation of an equilibrium reaction between the dissolved ions and undissolved solid.
The equilibrium equation is,

Initially - 0 0
At equilibrium - s s
The Solubility product will be equal to,
![K_{sp}=[Ba^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)

![[Ba^{2+}]=[CO^{2-}_3]=s=4.4\times 10^{-5}mole/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO%5E%7B2-%7D_3%5D%3Ds%3D4.4%5Ctimes%2010%5E%7B-5%7Dmole%2FL)
Now put all the given values in this expression, we get the value of solubility constant.

Therefore, the value of
for
is
.