To
determine the empirical formula of the compound given, we need to determine the ratio of each element in the compound. To do that we assume to have 100 grams sample
of the compound with the given composition. Then, we calculate for the number
of moles of each element. We do as follows:<span>
mass moles
C 56.79 4.73
H 6.56 6.50
O 28.37 1.77
N 8.28 0.59
Dividing the number of moles of each element with
the smallest value, we will have the empirical formula:
</span> moles ratio
C 4.73 / 0.59 8
H 6.50 / 0.59 11
O 1.77 / 0.59 3
N 0.59 / 0.59 1<span>
</span><span>
The empirical formula would be C8H11O3N.</span>
Evaporation rate: This is the rate at which a substance evaporates compared to either ether, which evaporates quickly, or butyl acetate, which evaporates slowly. If the substance has an evaporation rate greater than one, it evaporates faster than the comparison substance.
134 pm
Got this off of quizlet I’m not 100% an expert but I tried to help
Answer:
B
[(0.75)^3(0.25)]÷[(0.50)^2(0.75)]
Explanation:
toppr dot com
Answer:
31.60% phosphorus
Explanation:
To find the percent by mass, you first calculate the total mass and then the mass of phosphorus, and finally divide phosphorus mass by total.
Phosphorus mass: the molar mass of P is 30.97 g/mol, and since there's 1 mole of P, we just have 30.97 g.
Total mass: we add all the molar masses of the components together.
We have 3 moles of H, so we multiply 3 by 1.008 g/mol = 3.024 g H.
We already calculated the mass of phosphorus: 30.97 g P.
We have 4 moles of O, so we multiply 4 by 16.00 g/mol = 64.00 g O.
The total is then the sum: 3.024 + 30.97 + 64.00 = 97.994 g ≈ 97.99 g
Now, to find the percentage, we take 30.97 g P and divide by 97.99:
30.97/97.99 ≈ 0.3160 ⇒ 31.60% P
Thus, the answer is 31.60% phosphorus.
Hope this helps!