Answer:
I think that the answer is 3/25
Answer:
The proportion of students whose height are lower than Darnell's height is 71.57%
Step-by-step explanation:
The complete question is:
A set of middle school student heights are normally distributed with a mean of 150 centimeters and a standard deviation of 20 centimeters. Darnel is a middle school student with a height of 161.4cm.
What proportion of proportion of students height are lower than Darnell's height.
Answer:
We first calculate the z-score corresponding to Darnell's height using:

We substitute x=161.4 ,
, and
to get:

From the normal distribution table, we read 0.5 under 7.
The corresponding area is 0.7157
Therefore the proportion of students whose height are lower than Darnell's height is 71.57%
Answer:
mRP = 125°
mQS = 125°
mPQR = 235°
mRPQ = 305°
Step-by-step explanation:
Given that
Then:
- measure of arc RP, mRP = mROP = 125°
Given that
- ∠QOS and ∠ROP are vertical angles
Then:
- measure of arc QS, mQS = mROP = 125°
Given that
- ∠QOR and ∠SOP are vertical angles
Then:
Given that
- The addition of all central angles of a circle is 360°
Then:
mQOS + mROP + mQOR + mSOP = 360°
250° + 2mQOR = 360°
mQOR = (360°- 250°)/2
mQOR = mSOP = 55°
And (QOR and SOP are central angles):
- measure of arc QR, mQR = mQOR = 55°
- measure of arc SP, mSP = mSOP = 55°
Finally:
measure of arc PQR, mPQR = mQOR + mSOP + mQOS = 55° + 55° + 125° = 235°
measure of arc RPQ, mRPQ = mROP + mSOP + mQOS = 125° + 55° + 125° = 305°
Answer:
B) (1/2, -8)
Step-by-step explanation:
(1, -6) and (0, -10)
Midpoint formula:
((x1+x2)/2, (y1+y2)/2)
Solving for x:
(x1+x2)/2
(1 + 0)/2
1/2
Solving for y:
(y1+y2)/2
(-6-10)/2
(-16)/2
-8