Answer:
Output voltage is 1.507 mV
Solution:
As per the question:
Nominal resistance, R = 
Fixed resistance, R = 
Gauge Factor, G.F = 2.01
Supply Voltage, 
Strain, 
Now,
To calculate the output voltage,
:
WE know that strain is given by:

Thus

Now, substituting the suitable values in the above eqn:


Answer:
The speed of the block is 8.2 m/s
Explanation:
Given;
mass of block, m = 2.1 kg
height above the top of the spring, h = 5.5 m
First, we determine the spring constant based on the principle of conservation of potential energy
¹/₂Kx² = mg(h +x)
¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)
0.03125K = 118.335
K = 118.335 / 0.03125
K = 3786.72 N/m
Total energy stored in the block at rest is only potential energy given as:
E = U = mgh
U = 2.1 x 9.8 x 5.5 = 113.19 J
Work done in compressing the spring to 15.0 cm:
W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J
This is equal to elastic potential energy stored in the spring,
Then, kinetic energy of the spring is given as:
K.E = E - W
K.E = 113.19 J - 42.6 J
K.E = 70.59 J
To determine the speed of the block due to this energy:
KE = ¹/₂mv²
70.59 = ¹/₂ x 2.1 x v²
70.59 = 1.05v²
v² = 70.59 / 1.05
v² = 67.229
v = √67.229
v = 8.2 m/s
Answer:
18 m
Explanation:
Given : vo = 0 m/s ; t = 3 s; a = 4 m/s^2 ; d = ? m ; average velocity = ? m/s ; fonal velocity = ? m/s
solving for the final velocity, v
v = a * t
v = 4 m/s^2 * 3 s
v = 12 m / s
Solving for the average velocity. avg v
avg v = (vo + v) / 2
avg v = (0 m / s + 12 m/s) / 2
avg v = 6 m / s
Solving for the distance traveled after 3 s
d = avg v * t
d = 6 m / s * 3 s
d = 18 meters
In the first 3s the car travels 18 meters.
I'm not sure but I know u is 10^6