Answer:
f.The period is independent of the suspended mass.
Explanation:
The period of a pendulum is given by

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that:
1) the period of the pendulum depends only on its length, L, and it is proportional to the square root of the length
2) the period does not depend neither on the mass of the pendulum, nor on its amplitude of oscillation
So, the only correct statements are
f.The period is independent of the suspended mass.
Note: statement "e.The period is proportional to the length of the wire" is also wrong, because the period is NOT proportional to the length of the wire, but it is proportional to the square root of it.
Answer:
734.215N
Explanation:
First we calculate the angle that corresponds to a 5% slope using the Tan-1 function

then we use the component that corresponds to the direction parallel to the road, additionally we must multiply by the gravity value to find the weight(g=9.81m/s^2)
Wx=M*g*sen(2.86)=1500kg*9.81*sen(2.86)=734.215N
The frequency of a wave is the number of waves that passes through a point in a certain time. The less waves that pass in a period of time the lower the frequency of the wave. The more waves that pass in a period of time the higher the frequency of the wave. When measuring wave length the time period used is usually one second.
Answer:
the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Explanation:
Given;
initial velocity of the airplane. u = 34.5 m/s
distance traveled by the airplane, s = 46,100 m
final velocity of the airplane, v = 40.7 m/s
The acceleration of the airplane is calculated from the following kinematic equation;
v² = u² + 2as

Therefore, the acceleration of the airplane is 5.06 x 10⁻³ m/s²
1) 3 miles/Hour
The speed is defined as the distance covered divided by the time taken:

where
d = 1.5 mi is the distance
t = 0.5 h is the time taken
Substituting,

2) 1.34 m/s south
Velocity, instead, is a vector, so it has both a magnitude and a direction. We have:
is the displacement in meters
is the time taken in seconds
Substituting,

And the direction of the velocity is the same as the displacement, so it is south.