centripetal acceleration is given by formula

given that


now we have




so the ratationa frequency is given by




Answer:
this is were you get everything
Explanation:
No, the speed at which an object falls is not equal to the acceleration at which it falls.
Answer:
Option B
Explanation:
Speed is defined as how fast an object can cover a specific distance and in what time it covers. So it is measured as the ratio of distance covered to the time taken to cover that distance. While acceleration is the rate of change of velocity. Moreover, speed is a scalar quantity and acceleration is a vector quantity. So most of the times, the direction will play an important role in the varying values of speed and acceleration. Also, acceleration of an object will depend upon the force and mass of the object. Thus, speed and acceleration will not attain same value always.
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3