Answer:
1.) Waves carry energy through empty space or through a medium without transporting matter. While all waves can transmit energy through a medium, certain waves can also transmit energy through empty space. ... When waves travel through a medium, the particles of the medium are not carried along with the wave.
2.) Mechanical Waves are waves which propagate through a material medium (solid, liquid, or gas) at a wave speed which depends on the elastic and inertial properties of that medium. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. Longitudinal waves vibrating in the direction of propagation while Transverse waves vibrate at right angles to the direction of its propagation.
3.) They can carry a little energy or a lot of energy. They can be transverse or longitudinal. However, all waves have common properties—amplitude, wavelength, frequency, and speed. Amplitude describes how far the medium in a wave moves.
I hope this helps!
Answer:
The frequencies are 
Explanation:
From the question we are told that
The speed of the wave is 
The length of vibrating clothesline is 
Generally the fundamental frequency is mathematically represented as

=> 
=> 
Now this other frequencies of vibration experience by the clotheslines are know as harmonics and they are obtained by integer multiple of the fundamental frequency
So
The frequencies are mathematically represented as

=> 
Where n = 1, 2, 3 ....
(a) The ball's height <em>y</em> at time <em>t</em> is given by
<em>y</em> = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve <em>y</em> = 0 for <em>t</em> :
0 = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
0 = <em>t</em> ((20 m/s) sin(40º) - 1/2 <em>g t</em> )
<em>t</em> = 0 or (20 m/s) sin(40º) - 1/2 <em>g t</em> = 0
The first time refers to where the ball is initially launched, so we omit that solution.
(20 m/s) sin(40º) = 1/2 <em>g t</em>
<em>t</em> = (40 m/s) sin(40º) / <em>g</em>
<em>t</em> ≈ 2.6 s
(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration <em>g</em>. So
0² - ((20 m/s) sin(40º))² = 2 (-<em>g</em>) <em>y</em>
where <em>y</em> in this equation refers to the maximum height of the ball. Solve for <em>y</em> :
<em>y</em> = ((20 m/s) sin(40º))² / (2<em>g</em>)
<em>y</em> ≈ 8.4 m
Answer:
El lado positivo que tuvo el auge de la industrialización es principalmente que: Permitió el desarrollo económico de una gran cantidad de países. Marco un nuevo estilo de vida con mayor índice de globalización y producción. Creó una gran cantidad de fuentes de empleo.
Explanation:
Answer:
Shawn's speed relative to Susan's speed = 10 mph
Resultant velocity = 82.32 mph
Explanation:
The given data :-
i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.
ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.
iii) The speed of both Susan and Shawn is relative to earth.
iv) The angle between Susan in north and Shawn in east is 90°.
We have to find Shawn's speed relative to Susan's speed.
v₂₁ = v₂ - v₁ = 63 - 53 = 10 mph
Resultant velocity,

v = 82.32 mph