Answer:
1 / f = 1 / i + 1 / o thin lens equation
1 / i = 1 / f - 1 / o = (o - f) / (o * f)
i = o * f / (o - f)
i = 54.2 * 12.7 / (54.2 - 12.7) = 16.6 cm image distance
Image is real and inverted and 16.6 / 54.2 * 6 = 1.94 cm tall
Answer:
30°
Explanation:
According to the second law of reflection, it States that the angle of incidence i is equal to the angle of reflection r.
The angle of incidence is known to be the angle between the incident ray and the normal.
The Angle of reflection is the angle between the reflected ray and the normal.
This normal ray is a ray that is perpendicular to the surface.
According to the question, if the beam of light is reflected off the surface and its angle of incidence is 30°, its angle of reflection will also be 30° i.e i=r = 30°
Answer:

Explanation:
As in any sample you will have 75.8% of Cl-35 iosotopes and 24.3% of Cl-37 iosotopes you can get the average atomic mass as:

Answer:
Distance from start point is 72.5km
Explanation:
The attached Figure shows the plane trajectories from start point (0,0) to (x1,y1) (d1=40km), then going from (x1,y1) to (x2,y2) (d2=56km), then from (x2,y2) to (x3,y3) (d3=100). Taking into account the angles and triangles formed (shown in the Figure), it can be said:

Using the Pitagoras theorem, the distance from (x3,y3) to the start point can be calculated as:

Replacing the given values in the equations, the distance is calculated.
1. liquid solution to a. oceans
2. gaseous solution to b. clouds
Not sure about 3 and 4.
3 might be oxygen but I think that's 5. element.
Hope this helps, not sure about water and air though.