Answer:
Intensity of the transmitted radio wave is 5.406 x 10⁻⁶ W/m²
Explanation:
Given;
power of radio transmitter, P = 63.2 kW = 63200 W
distance of transmission, r = 30.5 km
Intensity of the transmitted radio wave is calculated as follows;

where;
I is the intensity of the transmitted radio wave
Substitute the given values and calculate the intensity of the transmitted radio wave;

Therefore, Intensity of the transmitted radio wave is 5.406 x 10⁻⁶ W/m²
Answer:
The acceleration of the electron is 1.457 x 10¹⁵ m/s².
Explanation:
Given;
initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s
distance traveled by the electron, d = 0.01 m
final velocity of the electron, v = 5.4 x 10⁶ m/s
The acceleration of the electron is calculated as;
v² = u² + 2ad
(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a
(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²
(2 x 0.01)a = 2.91375 x 10¹³

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².