I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .
While he is lifting the dumbell as the definition of work done = moving a mass through a distance = F x d
Answer:
2943 J
Explanation:
Potential energy = mass x acceleration due to gravity x height in meters
(P.E. = mgh)
Substitute the given numbers: (I take acceleration due to gravity as 9.81 m s^-2)
PE = 40 x 9.81 x (0.15x50)
PE = 2943 J
Answer:
D. Wind turbines take up a lot of space.
Explanation:
In wind turbines the kinetic energy received by the air molecules is converted into electrical energy by the use of turbines
So here in order to get more kinetic energy from air we need more crossectional area of the wind mill to interact with the air
So here we need the large size of turbines
so this is the main disadvantage of the wind turbines because it needs large area to install the whole setup also the efficiency of this turbine is small so it needs large number of wind mills to setup good output power
so correct answer will be
D. Wind turbines take up a lot of space.