Answer:
the one with a higher mass
Explanation:
The body with more mass will have the greater kinetic energy of the two.
Kinetic energy is the energy due to the motion of body. It is mathematically expressed as:
K.E =
m v²
m is the mass
v is the velocity
Since the velocity of the two bodies are the same, and mass is directly proportional to kinetic energy, the body with more mass will have a higher kinetic energy.
So between mass m1 and mass m2, the one with a greater mass will have a higher kinetic energy
Answer: magnitude of applied force is FA = mg + F
Where F is the resultant force downward that the rope moves with
Explanation:
Force downwards F is,
F = FA - T
T is the upwards tension force on the rope
FA is the actual applied force in pulling the rope down.
Therefore, T = FA - F .....equ. (1)
For the box to move up with force ma ( it's mass times its acceleration upwards) upwards tension on the roap must exceed its own weight mg ( it's mass times acceleration due to gravity 9.8m/s^2)
Therefore, ma = T - mg
T = ma + mg ..... equ. (2)
Equating equ. 1 and 2
T = FA - F = ma + mg
Therefore FA = ma + mg + F
But at constant velocity a = 0
Magnitude of applied force becomes
FA = mg + F
See image below
Answer:
The cost of energy is $ 0.34.
Explanation:
The energy is the capacity to do work.
The energy is a scalar quantity and its SI unit is Joule.
The commercial unit of energy is kWh.
Cost of 1 kWh energy = $ 0.17
energy loss by standard window is 2 kWh .
So, the cost of lost of energy is
Cost = $ 0.17 x 2 = $ 0.34
Answer:
50 degree.
Explanation:
Given that the components of vector A are given as follows: Ax = 5.6 Ay = -4.7
The angle between vector A and B in the positive direction of x-axis will be achieved by using the formula:
Tan Ø = Ay/Ax
Substitute Ay and Ax into the formula above.
Tan Ø = -4.7 / 5.6
Tan Ø = -0.839
Ø = tan^-1(-0. 839)
Ø = - 40 degree
Therefore, the angle between vector A and B positive direction of x-axis will be
90 - 40 = 50 degree.