Answer:
The algorithm is as follows:
1. Declare Arr1 and Arr2
2. Get Input for Arr1 and Arr2
3. Initialize count to 0
4. For i in Arr2
4.1 For j in Arr1:
4.1.1 If i > j Then
4.1.1.1 count = count + 1
4.2 End j loop
4.3 Print count
4.4 count = 0
4.5 End i loop
5. End
Explanation:
This declares both arrays
1. Declare Arr1 and Arr2
This gets input for both arrays
2. Get Input for Arr1 and Arr2
This initializes count to 0
3. Initialize count to 0
This iterates through Arr2
4. For i in Arr2
This iterates through Arr1 (An inner loop)
4.1 For j in Arr1:
This checks if current element is greater than current element in Arr1
4.1.1 If i > j Then
If yes, count is incremented by 1
4.1.1.1 count = count + 1
This ends the inner loop
4.2 End j loop
Print count and set count to 0
<em>4.3 Print count</em>
<em>4.4 count = 0</em>
End the outer loop
4.5 End i loop
End the algorithm
5. End
Answer:
The answer is below
Explanation:
a) The weight of the combined system is the sum of the weight of the water and the weight of the tank

b) Since the weight of a system can be divided into smaller portions, hence weight is an extensive property.
c) When analyzing the acceleration of gases as they flow through a nozzle, the geometry of the nozzle which is an open system can be chosen as our system.
d) Given that:

Answer:
A good design for a portable device to mix paint minimizing the shaking forces and vibrations while still effectively mixing the paint. Is:
The best design is one with centripetal movement. Instead of vertical or horizontal movement. With a container and system of holding structures made of materials that could absorb the vibration effectively.
Explanation:
First of all centripetal movement would be friendlier to our objective as it would not shake the can or the machine itself with disruptive vibrations. Also, we would have to use materials with a good grade of force absorption to eradicate the transmission of the movement to the rest of the structure. Allowing the reduction of the shaking forces while maintaining it effective in the process of mixing.