It appears that your answer contains either a link or inappropriate words. Please correct and submit again! error
Had to screenshot the solution check attached
Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa
Answer:
I think reduce your following distance
Answer:
The amount of cargo the plane can carry is 8707.89 N
Explanation:
The surface area of the wings facing the air = 30×6×2 × sin(2.5) = 15.7 m²
The speed of the plane 550 km/h = 152.78 m/s
The volume of air cut through per second = 15.7 × 152.78 = 2399.07 m³
The mass of air = Volume × Density = 2399.07 × 0.37 = 887.65 kg
Weight of air = Mass × Acceleration due to gravity = 887.65 × 9.81 = 8707.89 N
Given that the plane is already airborne, the additional cargo the plane can carry is given by the available lift force of the plane.
The amount of cargo the plane can carry = 8707.89 N
Explanation:
Okay soo-
Given-
u = 60 km/hr = 60×1000/3600=50/3 m/s
t = 20 s
s = 250 m
a = ?
v = ?
Solution -
Here, acceleration is uniform.
(a) According to 2nd kinematics equation,
s = ut + ½at^2
250 = 50/3 ×20 + 0.5×a×20×20
250-1000/3=200a
(750-1000)/3=200a
a = -250/(3×200)
a = -5/12
a = 0.4167 m/s^2
The required uniform acceleration of the car is 0.4167 m/s^2.
(b) According to 1st kinematics equation
v = u + at
v = 50/3 + (-5/12)×20
v = 50/3-25/3
v = 25/3
v = 8.33 m/s
The speed of the car as it passes the traffic light is 8.33 m/s.
Good luck!