Answer: To increase the rigidity of the system you could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.
Explanation:
When a rule is displaced from its vertical position, it oscillates back and forth because of the restoring force opposing the displacement. That is, when the rule is on the left there is a force to the right.
By holding a ruler with one hand and deforming it with the other a force is generated in the opposite direction which is known as the restoring force. The restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. The momentum gained causes the ruler to move to the right leading to opposite deformation. This moves the ruler again to the left. The whole process is repeated until dissipative forces reduce the motion causing the ruler to come to rest.
The relationship between restoring force and displacement was described by Hooke's law. This states that displacement or deformation is directly proportional to the deforming force applied.
F= -kx, where,
F= restoring force
x= displacement or deformation
k= constant related to the rigidity of the system.
Therefore, the larger the force constant, the greater the restoring force, and the stiffer the system.
Answer:
x=22.57 m
Explanation:
Given that
35 m in W of S
angle = 40 degrees
25 m in east
From the diagram
The angle

From the triangle OAB


x=22.57 m
Therefore the answer of the above problem will be 22.57 m
When a light wave strikes an object, it can be absorbed, reflected, or refracted by the object. All objects have a degree of reflection and absorption. ... In the natural world, light can also be transmitted by an object. That is, light can pass through an object with no effect (an x-ray, for example).
Answer:

Explanation:
= Strain = 0.49
= 3.1 MPa
At t = Time = 32 s
= 0.41 MPa
= Time-independent constant
Stress relation with time

at t = 32 s

The time independent constant is 16.0787 s

At t = 6

From the first equation



<u>Answer:</u>
In addition to average weather conditions, climatological data also describes annual variations and fluctuations of temperature, precipitation, wind speed and other variables.
<u>Explanation</u>:
A lot many observations are made all around the world regarding the weather each day. These observations and analysis are done by humans as well as automated instruments. The weather data is collected each day all year and any inaccuracies and discrepancies are checked and rectified. The results are later then presented as the climate data. There are various factors that are taken into consideration while determining the climate of a region. Apart from the factors that are already mentioned, wind speed is also one of the other variables.