-2/5 = 11k - k
-2/5 = 10k
-2/5/10 = k
-2/5 * 10 = k
-2/50 = k
k = -1/25.
-1/25 - 2/5 = 11k is true.
Answer:
Explanation:
We are given that
Surface area of membrane=
Thickness of membrane=
Assume that membrane behave like a parallel plate capacitor.
Dielectric constant=5.9
Potential difference between surfaces=85.9 mV
We have to find the charge resides on the outer surface of membrane.
Capacitance between parallel plate capacitor is given by
Substitute the values then we get
Capacitance between parallel plate capacitor=
V=
Hence, the charge resides on the outer surface=
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J
Answer:
a)
b)
Explanation:
From the exercise we got the ball's equation of position:
a) To find the average velocity at the given time we need to use the following formula:
Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001
--
--
--
b) To find the instantaneous velocity we need to derivate the equation
Explanation:
Understanding that stars are naturally quite hot, imagine I pulled a piece of hot iron from a furnace. It would glow a bright red, and then slowly fade to black as the iron cools.
White dwarfs glow for the same reason - they are HOT!