Answer:
Q = 5267J
Explanation:
Specific heat capacity of copper (S) = 0.377 J/g·°C.
Q = MSΔT
ΔT = T2 - T1
ΔT=49.8 - 22.3 = 27.5C
Q = change in energy = ?
M = mass of substance =508g
Q = (508g) * (0.377 J/g·°C) * (27.5C)
Q= 5266.69J
Approximately, Q = 5267J
I think it's b..................
Answer:
The distance between the two objects must be squared.
Explanation:
Gravitational force always act between two objects that have mass. The gravitational force is a weak force and attractive in nature.
The force of pull depends on the masses of the two objects and the distance between them.
The formula to calculate gravitational force between two objects having masses 'm' and 'M' and separated by a distance 'd' is given as:

Where, 'G' is called the universal gravitational constant and its value is equal to
.
Now, from the above formula, it is clear that, the force of gravitation is inversely proportional to the square of the distance between the two objects.
Thus, the quantity that must be squared in the equation of gravitational force between two objects is the distance 'd'.
<span>Most of the earth's fresh water is stored as ice in the Arctic and Antarctic regions of the globe.</span>
Answer:
Time taken to reach final velocity = 5.5 second
Explanation:
Given:
Initial velocity (Starting from rest)(u) = 0 m/s
Acceleration of ball (a) = 1 m/s²
Final velocity (v) = 5.5 m/s
Find:
Time taken to reach final velocity
Computation:
Using first equation of motion;
v = u + at
where,
v = final velocity
u = initial velocity
a = acceleration
t = time taken
5.5 = 0 + (1)(t)
5.5 = t
Time taken to reach final velocity = 5.5 second