Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
I Think The answer is a I hope it helps My friend Message Me if I’m wrong and I’ll change My answer and fix it for you
The formula that is applicable here is E = kQ/r^2 in which the energy of attraction is proportional to the charges and inversely proportional to the square of the distance. In this case,
kQ1/(r1)^2 = kQ2/(r2)^2 r1=l/3, r2=2l/3solve Q1/Q2
kQ1/(l/3)^2 = kQ2/(2l/3)^2 kQ1/(l^2/9) = kQ2/(4l^2/9)Q1/Q2 = 1/4
Answer:
The planet Jupiter completes one revolution of the sun in 362710000 seconds. Long time, right?
Explanation:
3.154x10^7=3.154x10000000=31540000
11.5x31540000=362710000
Answer:
Earth attract the Moon with a force that is greater.
Explanation:
According to the law of gravitation, the gravitational force between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
Mathematically, F1 = Gm1m2/r²... 1
Let m1 be the mass of the earth and m2 be that of the moon
If the Earth is much more massive than is the Moon, the new force of attraction between them will become;
F2= G(2m1)m2/r²
F2 = 2Gm1m2/r² ... (2)
Dividing eqn 1 by 2 we have;
F1/F2 = (Gm1m2/r²)÷(2Gm1m2/r²)
F1/F2 = Gm1m2/r²×r²/2Gm1m2
F1/F2 = 1/2
F2=2F1
This shows that that the earth will attract the moon by a force 2times the initial force of the masses(i.e a much greater force)