Explanation:
The Net Force of the object can be written by:
Fnet = ma
where m is the mass of the object in <em>kg</em>
a is the acceleration of the object in <em>m/s^2</em>
Hence by applying the formula we get:
Fnet = (2.0)(3.0)
= 6N
We also know that Net force is also the sum of all forces acting on an object. In this case Friction and the Pushing Force is acting on the object. Hence we can write that:
Fnet = Pushing Force + (-Friction)
6N = 6N - Friction
Friction = 0N
Hence the<u> </u><u>f</u><u>orce of friction is 0N.</u>
<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>1</u>
- Initial velocity=u=0m/s
- Final velocity=v=10m/s
- Time=10s=t




<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>2</u>
- initial velocity=0m/s=u
- Final velocity=v=0.25m/s
- Time=t=2s



Person-1 is accelerating faster.
Whats the question exactly?
Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
Answer:
False statement = There must be a non-zero net force acting on the object.
Explanation:
An object is moving at a constant speed along a straight line. If the speed is constant then its velocity must be constant. We know that the rate of change of velocity is called acceleration of the object i.e.

a = 0
⇒ The acceleration of the object is zero.
The product of force and acceleration gives the magnitude of force acting on the object i.e.
F = m a = 0
⇒ The net force acting on the object must be zero.
So, the option (a) is not true. This is because the force acting on the object is zero. First option contradicts the fact.