Hybrid
<u>Hybrid</u> modified the concept by adding an internal combustion engine and marketing hybrids that were part electric and part gas powered.
- The driving wheels of hybrid vehicles receive power from their drivetrains.
- A hybrid car has numerous sources of propulsion.
- There are numerous hybrid configurations.
- A hybrid vehicle might, for instance, get its energy from burning gasoline while alternating between an electric motor and a combustion engine.
- Although they have primarily been employed for rail locomotives, electrical vehicles have a long history of integrating internal combustion and electrical transmission, like in a diesel-electric power-train.
- Because the electric drive transmission directly substitutes the mechanical gearbox rather than serving as an additional source of motive power, a diesel-electric powertrain does not meet the definition of a hybrid.
- Only the electric/ICE hybrid car type was readily accessible on the market as of 2017.
- One type used parallel operation to power both motors at the same time.
- Another ran in series, using one source to supply power solely and the other to supply electricity.
- Either source may act as the main driving force, with the other source serving to strengthen the main.
To learn more about hybrid vehicles visit:
brainly.com/question/14610495
#SPJ4
Answer:
a = F-ff/m
Explanation:
According to Newton's second law of motion which states that "the rate of change in momentum of a body is directly proportional to the applied force F and acts in the direction of the force.
Mathematically;
F = ma
Since two forces acts on the cart i.e the moving force F and the frictional force Ff , we will take the sum of the forces.
∑F = ma where
m is the mass of the cart
a is its acceleration
∑F = F+(-ff )(since frictional force is an opposing force)
F - ff = ma
Dividing both sides by mass m
a = F-ff/m
Answer:
The maximum kinetic energy is 100 j.
Explanation:
<h3>The kinetic energy = (potential energy) + (kinetic energy) and the potential energy of 0 J implying its kinetic energy is 100 J, which is its maximum.
</h3>
ELECTROSTATIC:
relating to stationary electric charges or fields as opposed to electric currents.
NEUTRAL:
nor negative nor positive/having no charge
POSITIVELY CHARGED:
positive charge occurs when the number of protons exceeds the number of electrons
NEGATIVELY CHARGED:
negative charge occurs when the number of electrons exceeds the number of protons.
COULOMB:
SI unit for electric charge. One coulomb is equal to the amount of charge from a current of one ampere flowing for one second.
MICROCOULOMB:
a unit of electrical charge equal to one millionth of a coulomb.
NANOCOULOMB:
Nanocoulombs are a unit of charge 1,000,000,000 times smaller than Coulomb.
CONSERVATION OF CHARGE:
constancy of the total electric charge in the universe or in any specific chemical or nuclear reaction
QUANTISATION OF CHARGE:
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge.