Answer:
A
B
C
D
Explanation:
Considering the first question
From the question we are told that
The spring constant is
The potential energy is
Generally the potential energy stored in spring is mathematically represented as
=>
=>
=>
Considering the second question
From the question we are told that
The mass of the dart is m = 0.050 kg
Generally from the law of energy conservation
=>
=>
Considering the third question
The height at which the dart was fired horizontally is
Generally from the law of energy conservation
Here KE is kinetic energy of the dart which is mathematical represented as
=>
=>
=>
Considering the fourth question
Generally the total time of flight of the dart is mathematically represented as
=>
=>
Generally the horizontal distance from the equilibrium position to the ground is mathematically represented as
=>
=>
Answer:
36g
Explanation:
Given parameters:
Number of moles of H₂O = 2moles
Unknown:
Mass of H₂O = ?
Solution:
To solve this problem, use the expression below:
Mass of H₂O = number of moles x molar mass
Molar mass of H₂O = 2(1) + 16 = 18g/mol
Mass of H₂O = 2 x 18 = 36g
E = (1/2)CV²
1 = (1/2)*(2*10⁻⁶)V²
10⁶ = V²
1000 = V
You should charge it to 1000 volts to store 1.0 J of energy.
Answer:
N= 238 turns
Explanation:
The induced Emf that goes through a solenoid can be calculated using the below formula;
Where ξ=induced Emf
L= self inductance
I= current
ξ= L|dⁱ/dt|
Making L which is the self inductance subject of formula we have
L=ξ/[|dⁱ|*|dt|]
The current here is changing at the rate of
.0260 A/s
L=NΦB/i
N=ξ/Φ|di|*|dt|
Magnitude of the induced Emf given= 12.6mV then if we convert to volt we have 12.6×10⁻³ V
The current I = 1.40A
Magnitude flux through the flux=/0.00285 Wb
Then if we substitute all this Value to equation above we have
N=(12.6×10⁻³ V×1.40A)/(0.00285 Wb×0.0260 A/s)
N=238turn
Therefore, there are 238turns in the solenoid