Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
9.82 ×
Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = 
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×
Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = 
= 
= 
= 9.8222 × 
The wavelength of the object is 9.82 ×
Hz.