Answer:
I know that the 100-mL graduated cylinders are always read to 1 decimal place.
I think for 50 mL graduated cylinders, it lets you measure volumes up to 50.0 mL to the nearest 0.1 or 0.2 mL, depending on your exact cylinder.
Answer:
Phosphorus cycle
Explanation:
Biogeochemical cycle, any of the natural pathways by which essential elements of living matter are circlated.
There are four types of biogeochemical cycle, they are ; water cycle,carbon cycle,nitrogen cycle and phosphorous cycle
Carbon cycle is the cycle in which photosynthesis and cellular respiration take place.
Water cycle involves transpiration.
Nitrogen cycle Is the cycle that is dependent upon bacteria for nitrogen fixation and denitrification.
Phosphorus cycle is one of the slowest biogeochemical cycle. It does not stay in the atmosphere, because it is normally in a liquid state at room temperature. It does not include the atmosphere.
It was by far "warm and wet growing seasons" that was the most important factor in terms of the South's economic development. Cotton and tobacco were the biggest exports.
Explanation:
These crops created tons of cash, had massive markets round the world, however required a stable and enormous hands to grow and harvest them.The yank South is understood for its long, hot summers, and wealthy soils in stream valleys creating it a perfect location for growing cotton. the various southern seaports and riverside docks allowed shipping cotton to remote destinations. By 1860, Southern plantations equipped seventy fifth of the world's cotton, with shipments from Houston, city, Charleston, Mobile, Savannah, and some different ports. The unquenchable European demand for cotton was a results of the commercial Revolution that created the machinery and factories to method raw cotton into vesture that was higher and cheaper than hand-made product.
Answer:
The new equilibrium concentration of HI: <u>[HI] = 3.589 M</u>
Explanation:
Given: Initial concentrations at original equilibrium- [H₂] = 0.106 M; [I₂] = 0.022 M; [HI] = 1.29 M
Final concentrations at new equilibrium- [H₂] = 0.95 M; [I₂] = 0.019 M; [HI] = ? M
<em>Given chemical reaction:</em> H₂(g) + I₂(g) → 2 HI(g)
The equilibrium constant (
) for the given chemical reaction, is given by the equation:
![K_{c} = \frac {[HI]^{2}}{[H_{2}]\: [I_{2}]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%20%7B%5BHI%5D%5E%7B2%7D%7D%7B%5BH_%7B2%7D%5D%5C%3A%20%5BI_%7B2%7D%5D%7D)
<u><em>At the original equilibrium state:</em></u>

<u><em>Therefore, at the new equilibrium state:</em></u>
![\Rightarrow [HI]^{2} = 713.59 \times 0.01805 = 12.88](https://tex.z-dn.net/?f=%5CRightarrow%20%5BHI%5D%5E%7B2%7D%20%3D%20713.59%20%5Ctimes%200.01805%20%3D%2012.88)
![\Rightarrow [HI] = \sqrt {12.88} = 3.589 M](https://tex.z-dn.net/?f=%5CRightarrow%20%5BHI%5D%20%3D%20%5Csqrt%20%7B12.88%7D%20%3D%203.589%20M)
<u>Therefore, the new equilibrium concentration of HI: [HI] = 3.589 M</u>