If the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
<h3>What is Charles's law?</h3>
Charles's law states that "the volume occupied by a definite quantity of gas is directly proportional to its absolute temperature.
It is expressed as;
V₁/T₁ = V₂/T₂
Given the data in the question;
- Initial temperature of gas T₁ = 100K
- Initial volume of gas V₁ = 300mL
- Final temperature T₂ = 200K
V₁/T₁ = V₂/T₂
V₂ = V₁T₂ / T₁
V₂ = ( 300mL × 200K ) / 100K
V₂ = 60000mLK / 100K
V₂ = 600mL
Therefore, if the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
Learn more about Charles's law here: brainly.com/question/12835309
#SPJ1
<h3 /><h3>
<u>Answer</u><u> </u><u>above</u><u> </u></h3>
<u>I</u><u> </u><u>cant</u><u> </u><u>send</u><u> </u><u>this</u><u> </u><u>with</u><u> </u><u>no</u><u> </u><u>text</u><u> </u>
<u>Have</u><u> </u><u>a</u><u> </u><u>nice</u><u> </u><u>day</u>
Answer:
The rate would be lower and the concentration of reactants would be lower.
Explanation:
The rate of a chemical reaction depends on the rate constant and the concentration of reactants.
For Ex:
For a reaction experimentally given by A + B ----> C + D
Rate = k[A][B]
where k is the rate constant
[A] = concentration of reactant A
[B] = concentration of reactant B
As the reaction proceeds,the concentration of reactant decrease and concentration of products increase.Rate constant k depends only on temperature and activation energy.Hence it will remain constant throughout the reaction assuming that reaction is carried out at constant temperature and pressure.
Hence rate will depend only on concentration of reactants and hence decrease with decrease in concentration of reactants.