Answer:
See Explanation Below
Step-by-step explanation:
Question is incomplete; However, I'll assume values for matrices A and B. If you follow the steps highlighted below, you'll get your answer.
Assume that
![A = \left[\begin{array}{cccc}3&5&5&2\\-1&2&4&1\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%265%265%262%5C%5C-1%262%264%261%5Cend%7Barray%7D%5Cright%5D)
![B = \left[\begin{array}{cccc}1&2&-7&4\\0&-5&1&0\end{array}\right]](https://tex.z-dn.net/?f=B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%26-7%264%5C%5C0%26-5%261%260%5Cend%7Barray%7D%5Cright%5D)
a. <em>C = 2A + 3B</em>
First, we calculate 2A.
2A is the multiplication of all cells in matrix A by 2
![2A = 2 * \left[\begin{array}{cccc}3&5&5&2\\-1&2&4&1\end{array}\right]](https://tex.z-dn.net/?f=2A%20%3D%202%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%265%265%262%5C%5C-1%262%264%261%5Cend%7Barray%7D%5Cright%5D)
![2A = \left[\begin{array}{cccc}6&10&10&4\\-2&4&8&2\end{array}\right]](https://tex.z-dn.net/?f=2A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D6%2610%2610%264%5C%5C-2%264%268%262%5Cend%7Barray%7D%5Cright%5D)
Using the same step as above, we'll solve for 3B
![3B = 3 * \left[\begin{array}{cccc}1&2&-7&4\\0&-5&1&0\end{array}\right]](https://tex.z-dn.net/?f=3B%20%3D%203%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%26-7%264%5C%5C0%26-5%261%260%5Cend%7Barray%7D%5Cright%5D)
![3B = \left[\begin{array}{cccc}3&6&-21&12\\0&-15&3&0\end{array}\right]](https://tex.z-dn.net/?f=3B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%266%26-21%2612%5C%5C0%26-15%263%260%5Cend%7Barray%7D%5Cright%5D)
At this point, we can now add both matrices (2A + 3B)
![2A + 3B = \left[\begin{array}{cccc}6&10&10&4\\-2&4&8&2\end{array}\right]+ \left[\begin{array}{cccc}3&6&-21&12\\0&-15&3&0\end{array}\right]](https://tex.z-dn.net/?f=2A%20%2B%203B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D6%2610%2610%264%5C%5C-2%264%268%262%5Cend%7Barray%7D%5Cright%5D%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%266%26-21%2612%5C%5C0%26-15%263%260%5Cend%7Barray%7D%5Cright%5D)
To get a resulting matrix, we have to add corresponding cells. This is shown below
![2A + 3B = \left[\begin{array}{cccc}6+3&10+6&10-21&4+12\\-2+0&4-15&8+3&2+0\end{array}\right]](https://tex.z-dn.net/?f=2A%20%2B%203B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D6%2B3%2610%2B6%2610-21%264%2B12%5C%5C-2%2B0%264-15%268%2B3%262%2B0%5Cend%7Barray%7D%5Cright%5D)
![2A + 3B = \left[\begin{array}{cccc}9&16&-11&16\\-2&-11&11&2\end{array}\right]](https://tex.z-dn.net/?f=2A%20%2B%203B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D9%2616%26-11%2616%5C%5C-2%26-11%2611%262%5Cend%7Barray%7D%5Cright%5D)
<em>Since, C = 2A + 3B</em>
![C = \left[\begin{array}{cccc}9&16&-11&16\\-2&-11&11&2\end{array}\right]](https://tex.z-dn.net/?f=C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D9%2616%26-11%2616%5C%5C-2%26-11%2611%262%5Cend%7Barray%7D%5Cright%5D)
The entry represented c24 is the item in the 2nd row and the 4th column;
Going by the syntax
![C = \left[\begin{array}{cccc}1,1&1,2&1,3&1,4\\2,1&2,2&2,3&2,4\end{array}\right]](https://tex.z-dn.net/?f=C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%2C1%261%2C2%261%2C3%261%2C4%5C%5C2%2C1%262%2C2%262%2C3%262%2C4%5Cend%7Barray%7D%5Cright%5D)
By Comparison
C(2,4) = 2.
Hence c24 = 2
b. <em>C = 2A + 3B</em>
First, we calculate 2A.
3A is the multiplication of all cells in matrix A by 3
![3A = 3 * \left[\begin{array}{cccc}3&5&5&2\\-1&2&4&1\end{array}\right]](https://tex.z-dn.net/?f=3A%20%3D%203%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%265%265%262%5C%5C-1%262%264%261%5Cend%7Barray%7D%5Cright%5D)
![3A = \left[\begin{array}{cccc}9&15&15&6\\-3&6&12&3\end{array}\right]](https://tex.z-dn.net/?f=3A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D9%2615%2615%266%5C%5C-3%266%2612%263%5Cend%7Barray%7D%5Cright%5D)
Using the same step as above, we'll solve for 2B
![2B = 2 * \left[\begin{array}{cccc}1&2&-7&4\\0&-5&1&0\end{array}\right]](https://tex.z-dn.net/?f=2B%20%3D%202%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%26-7%264%5C%5C0%26-5%261%260%5Cend%7Barray%7D%5Cright%5D)
![2B = \left[\begin{array}{cccc}2&4&-14&8\\0&-10&2&0\end{array}\right]](https://tex.z-dn.net/?f=2B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D2%264%26-14%268%5C%5C0%26-10%262%260%5Cend%7Barray%7D%5Cright%5D)
At this point, we can now subtract (3A - 2B)
![3A - 2B = \left[\begin{array}{cccc}9&15&15&6\\-3&6&12&3\end{array}\right] - \left[\begin{array}{cccc}2&4&-14&8\\0&-10&2&0\end{array}\right]\\](https://tex.z-dn.net/?f=3A%20-%202B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D9%2615%2615%266%5C%5C-3%266%2612%263%5Cend%7Barray%7D%5Cright%5D%20-%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D2%264%26-14%268%5C%5C0%26-10%262%260%5Cend%7Barray%7D%5Cright%5D%5C%5C)
To get a resulting matrix, we have to subtract corresponding cells. This is shown below
![3A - 2B = \left[\begin{array}{cccc}9-2&15-4&15+14&6-8\\-3-0&6+10&12-2&3-0\end{array}\right]](https://tex.z-dn.net/?f=3A%20-%202B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D9-2%2615-4%2615%2B14%266-8%5C%5C-3-0%266%2B10%2612-2%263-0%5Cend%7Barray%7D%5Cright%5D)
![3A - 2B = \left[\begin{array}{cccc}7&11&29&2\\-3&16&10&3\end{array}\right]](https://tex.z-dn.net/?f=3A%20-%202B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D7%2611%2629%262%5C%5C-3%2616%2610%263%5Cend%7Barray%7D%5Cright%5D)
<em>Since, D = 3A - 2B</em>
![D = \left[\begin{array}{cccc}7&11&29&2\\-3&16&10&3\end{array}\right]](https://tex.z-dn.net/?f=D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D7%2611%2629%262%5C%5C-3%2616%2610%263%5Cend%7Barray%7D%5Cright%5D)
The entry represented d13 is the item in the 1st row and the 3rd column;
Going by the syntax
![D = \left[\begin{array}{cccc}1,1&1,2&1,3&1,4\\2,1&2,2&2,3&2,4\end{array}\right]](https://tex.z-dn.net/?f=D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%2C1%261%2C2%261%2C3%261%2C4%5C%5C2%2C1%262%2C2%262%2C3%262%2C4%5Cend%7Barray%7D%5Cright%5D)
By Comparison
D(1,3) = 29
Hence d13 = 29