1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
9

Which object will be considered to be in free fall

Physics
2 answers:
Arisa [49]3 years ago
8 0
<span>An object dropped in air that experiences no air resistance is said to be in free fall. W</span><span>hen an object is in free fall, the only force acting on the object is gravity.</span>
Pani-rosa [81]3 years ago
3 0
It depends on what they are 
You might be interested in
When reaching a boundary between two media (1 and 2), an incident ray is partially reflected and partially refracted. The ray is
lukranit [14]

Answer:

The angle of incidence when the reflected ray is perpendicular to the incident ray = 45°

Explanation:

According to Snell's Law,

n₁ sin θ₁ = n₂ sin θ₂

When the angle between the incident ray and reflected ray is 90°, the angle of incidence is θ₁ and the angle of reflection, θ₂ = 90° - θ₁ and the index of refraction in the Snell's Law for both media would be the same, n₁ = n₂ = n

n sin θ₁ = n sin (90° - θ₁)

Note that from trigonometric relations,

Sin (90° - θ₁) = cos θ₁

n sin θ₁ = n cos θ₁

(sin θ₁)/(cos θ₁) = 1

tan θ₁ = 1

θ₁ = arctan 1 = 45°

Hope this Helps!!!

7 0
3 years ago
Read 2 more answers
HELP ME! One airline limits the size of carry-on luggage to a volume of 40,000 cm^3. A passenger has a carry-on that has an area
EleoNora [17]
You must times the area by the volume, look at it as if the area is just one of 23 layers that makes up the volume.
1960x23=45080
so no it cannot be carried as it is 5080cm^3 over the limit
8 0
3 years ago
Read 2 more answers
A uniform bar 12 m long has a mass 20 kg. A 10 kg pointed mass is attached to one end of the rod. Now the position of COM of the
user100 [1]

Answer:

.

Explanation:

/

7 0
2 years ago
A car starts from rest and accelerates to 14 m/s in 2 seconds. What was its acceleration
Romashka [77]

Answer:

7m/s^2

Explanation:

using v=u+at

since the car started from rest, u=0 , v=14m/s t=2s

a =acceleration.

14=0+a×2

14=0+2a

14=2a

a= 14/2 =7

a=7m/s^2

7 0
2 years ago
A 0.30-kg object connected to a light spring with a force constant of 22.6 N/m oscillates on a frictionless horizontal surface.
gtnhenbr [62]

Answer:

(a)  vmax = 0.34m/s

(b)  v = 0.13m/s

(c)  v = 0.31m/s

(d)  x = 0.039m

Explanation:

Given information about the spring-mass system:

m: mass of the object = 0.30kg

k: spring constant = 22.6 N/m

A: amplitude of the motion = 4.0cm = 0.04m

(a) The maximum speed of the object is given by the following formula:

v_{max}=\omega A       (1)

w: angular frequency of the motion.

The angular frequency is calculated with the following relation:

\omega=\sqrt{\frac{k}{m}}           (2)

You replace the expression (2) into the equation (1) and replace the values of the parameters:

v_{max}=\sqrt{\frac{k}{m}}A=\sqrt{\frac{22.6N/m}{0.30kg}}(0.04m)=0.34\frac{m}{s}

The maximum speed of the object is 0.34 m/s

(b) If the object is compressed 1.5cm the amplitude of its motion is A = 0.015m, and the maximum speed is:

v_{max}=\sqrt{\frac{22.6N/m}{0.30kg}}(0.015m)=0.13\frac{m}{s}

The speed is 0.13m/s

(c) To find the speed of the object when it passes the point x=1.5cm, you first take into account the equation of motion:

x=Acos(\omega t)

You solve the previous equation for t:

t=\frac{1}{\omega}cos^{-1}(\frac{x}{A})\\\\\omega=\sqrt{\frac{22.6N/m}{0.30kg}}=8.67\frac{rad}{s}\\\\t=\frac{1}{8.67}cos^{-1}(\frac{1.5cm}{4.0cm})=0.13s

With this value of t, you can calculate the speed of the object with the following formula:

v=\omega Asin(\omega t)\\\\v=(8.67rad/s)(0.04m)sin((8.67rad/s)(0.13s))=0.31\frac{m}{s}

The speed of the object for x = 1.5cm is v = 0.31 m/s

(d) To calculate the values of x on which v is one-half the maximum speed, you first calculate the time t:

\frac{v_{max}}{2}=\omega A sin(\omega t)\\\\t=\frac{1}{\omega}sin^{-1}(\frac{v_{max}}{2\omega A})\\\\t=\frac{1}{8.67rad/s}sin^{-1}(\frac{0.13m/s}{2(8.67rad/s)(0.04m)})=0.021s

The position will be:

x=Acos(\omega t)=0.04mcos((8.67rad/s)(0.021s))=0.039m

The position of the object on which its speed is one-half its maximum velocity is 0.039

5 0
3 years ago
Other questions:
  • In which of the following situations has work been done? Select one: a. A weightlifter holds a 50kg barbell over his head for 3
    13·1 answer
  • A block of mass 57.1 kg rests on a slope having an angle of elevation of 28.3°. If pushing downhill on the block with a force ju
    7·1 answer
  • Which phase of matter contains particles that split into ions and electrons?
    13·1 answer
  • A change in a populations genes from one generation to the next due to chance or accident is refrerred as a
    5·1 answer
  • Which of the following materials is necessary to stop an alpha particle? a. three feet of concrete c. single sheet of aluminum f
    7·2 answers
  • What is artificial intelligence
    9·2 answers
  • An elderly sailor is shipwrecked on a desert island but manages to save his eyeglasses. The lens for one eye has a power of 1.28
    15·1 answer
  • Describe the factors that cause static friction between two surfaces to increase.
    7·1 answer
  • 0.22 L of pancake syrup has a mass of 33 g.
    15·1 answer
  • if you run off the pavement, you should: turn the steering wheel quickly toward the road steer straight and slow down before att
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!