The most crucial information would be its atomic number.
6x2=12m
6x18=108
12m+108
Simplified: m+9 bc 12/12 and 108/12
Weight in water = mass of block - mass of volume of displaced water
Answer:
g'(10) = 
Explanation:
Since g is the inverse of f ,
We can write
g(f(x)) = x <em> </em><em>(Identity)</em>
Differentiating both sides of the equation we get,
g'(f(x)).f'(x) = 1
g'(10) =
--equation[1] Where f(x) = 10
Now, we have to find x when f(x) = 10
Thus 10 =
+ 2
= 8
x = 
Since f(x) =
+ 2
f'(x) = -
f'(
) = -4 × 4 = -16
Putting it in equation 1, we get:
We get g'(10) = -
Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.