1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
14

Please help ASAP will name brainliest

Mathematics
1 answer:
katen-ka-za [31]3 years ago
5 0
I would say it’s 1yd, it’s too small to be 2yds.
What answer did you put and get wrong the first try?
You might be interested in
How do I solve it. I don't understand where I should start the problem I have the formulas
Luda [366]
V=length times width times height
wait, we need it in yards
3ft=1yard
so height=1

v=45 times 30 times 1
v=1350 cubic yards
1 cubic yard=201.974 gallons
so times both sides by 1350
272664.9 gallons
per every 5000 gallons of water we have 1 of chlorine
so 272664.9/5000=54.53298
so we need about 54.5 gallons or 55 gallons of cholrine




4 0
3 years ago
9. If f(x)=-2x^2+4x-6, <br> then f(2)=
Romashka-Z-Leto [24]

Answer:

f(2) = -6

General Formulas and Concepts:

Order of Operations: BPEMDAS

Substitution and Evaluation

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = -2x² + 4x - 6

f(2) is x = 2

<u>Step 2: Solve</u>

  1. Substitute:                          f(2) = -2(2)² + 4(2) - 6
  2. Exponents:                         f(2) = -2(4) + 4(2) - 6
  3. Multiply:                              f(2) = -8 + 8 - 6
  4. Add:                                    f(2) = -6
3 0
3 years ago
Please be correct !!!!!!!!!!!!!!!!!xx
givi [52]
<span>$2,022.92 would be the answer

</span>
5 0
3 years ago
Read 2 more answers
Given the system of linear equations.
Degger [83]

Part(A):

To solve the system of Linear equations using Substitution:

x+y=7 \\ 2x+y=5

Consider the first equation, x+y=7 implies x=7-y

\mathrm{Subsititute\:}x=7-y

2\left(7-y\right)+y=5

14-2y+y=5

14-y=5

\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}

14-y-14=5-14

-y=-9

\mathrm{Divide\:both\:sides\:by\:}-1

y=9

\mathrm{For\:}x=7-y

\mathrm{Subsititute\:}y=9

x=7-9=-2.\mathrm{The\:solutions\:to\:the\:system\:of\:equationts\:are:}

y=9,\:x=-2

PArt(B): Use a graph to verify your answer to the system:

Using Desmos graphing calculator, graph the two equations.

8 0
3 years ago
Read 2 more answers
Rotate the axes to eliminate the xy-term in the equation. Then write the equation in standard form.
kirill115 [55]

Answer:

\dfrac{x'^2}{2}-\dfrac{y'^2}{2}=1

Step-by-step explanation:

The rotation by angle \theta formulas are

\left\{\begin{array}{l}x=x'\cos \theta-y'\sin \theta\\y=x'\sin \theta+y' \cos \theta\end{array} \right.

To eliminate the xy-term, we have to rotate by 45°, so

\left\{\begin{array}{l}x=x'\cos 45^{\circ}-y'\sin 45^{\circ}\\y=x'\sin 45^{\circ} +y' \cos 45^{\circ}\end{array} \right.

\left\{\begin{array}{l}x=x'\dfrac{\sqrt{2}}{2}-y'\dfrac{\sqrt{2}}{2}\\y=x'\dfrac{\sqrt{2}}{2} +y' \dfrac{\sqrt{2}}{2}\end{array} \right.

Substitute them into the equation xy+1=0:

\left(x'\dfrac{\sqrt{2}}{2}-y'\dfrac{\sqrt{2}}{2}\right)\cdot \left(x'\dfrac{\sqrt{2}}{2}+y'\dfrac{\sqrt{2}}{2}\right)+1=0\\ \\\left(x'\dfrac{\sqrt{2}}{2}\right)^2 -\left(y'\dfrac{\sqrt{2}}{2}\right)^2+1=0\\ \\\dfrac{x'^2}{2}-\dfrac{y'^2}{2}=1

8 0
3 years ago
Other questions:
  • the midpoint of gh is m 5, 3. one endpoint is g 1, -5. find the coordinates of the other endpoint h.
    7·2 answers
  • Please help me out with this
    12·1 answer
  • Long Division: Write down your<br> steps!<br> 7_984
    12·1 answer
  • Evaluate the following:
    7·1 answer
  • Solve for x.<br><br> 8x^2−3=2
    6·1 answer
  • Display the data in a dot plot
    6·1 answer
  • Solve the following quadratic function by utilizing the square root method. f(x) = 1 - x2 x = + [?]
    14·2 answers
  • Question in the picture
    13·1 answer
  • I will mark as brainliest
    7·1 answer
  • Find m∠D<br><br> m∠D=<br><br> greatly appreciate if done asap:)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!