Because there are 4 students who passed in all subjects, we can say that only 2 students passed in English and Mathematics only, only 3 students passed in Mathematics and Science only, and no one passed in English and Science only.
Given that we have deduced the number of students who passed in two subjects, we can now solve for the number of students who passed only one subject.
English = 15 - (4 + 2 + 0) = 9
Mathematics = 12 - (4 + 3 + 2) = 3
Science = 8 - (4 + 3 + 0) = 1
1. In English but not in Science,
9 + 2 = 11
2. In Mathematics and Science but not in English
3 + 3 + 1 = 7
3. In Mathematics only
= 3
3. More than one subject only
3 + 4 + 2 + 9 = 18
It will really be helpful if you draw yourself a Venn Diagram for this item.
Answer:
(a) x = -0.418 , -3.581
(B) c = 6.855, -1.855
Step-by-step explanation:
(A) We have given equation 

On comparing with standard quadratic equation 
a = 2, b = 8 and c = 3
So roots of the equation will be 
(b) 

a = 1, b = -5 and c= -14
So
<span>5/6k=-20
k=-24
Hope this helps</span>
The term of the sequence is eleven 11
Answer:
25150
Step-by-step explanation:
First, we have to see that this is an arithmetic sequence... since to get the next element we add 5 to it. (a geometric sequence would be a multiplication, not an addition)
So, we have a, the first term (a = 4), and we have the difference between each term (d = 5), and we want to find the SUM of the first 100 terms.
To do this without spending hours writing them down, we can use this formula:

If we plug in our values, we have:

S = 50 * (8 + 495) = 50 * 503 = 25150