Jinx kxknxbxbxbjxj dbdbcj
Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
Answer:
Yes.
Explanation:
Yes, we have a problem with sending it to a landfill of copper oxide because it has harmful effect on the health of humans as well as more weight of the copper oxide. Copper oxide usually found in powder form which can easily be inhaled that causes death of the cell due to toxic effect on the mitochondria and lysosomes of the cell. It makes problem of health in carrying the copper oxide from the basement of the factory to the landfill region due to its power form so we can say that it can do problems to human health while carrying from one place to another.
The mass stays the same because if you have the same amount of steam then it can't change. The volume will get slightly smaller because the average kinetic energy of the molecules is less, so they move around less, so they take up less space. The particles are moving less fast.