Answer:
The funda mental frequency of the original tube is 182Hz.
Explanation:
See the attachment for the calculation steps.
In order to calculate the fundamental frequency of the original closed tube we need to find the length of the tube which is equal to the sum of the lengths of the two new tubes.
For closed tubes
f = nv/4L (n = 1, 3, 5,...n)
f = nv/2L (n = 1, 2, 3,...n)
The details of calculation can be found below in the attachment.
Answer:
Diffraction
Explanation:
Diffraction is the bending of waves around obstacles and openings. The amount of diffraction increases with increasing wavelength.
(a) The ball's height <em>y</em> at time <em>t</em> is given by
<em>y</em> = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve <em>y</em> = 0 for <em>t</em> :
0 = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
0 = <em>t</em> ((20 m/s) sin(40º) - 1/2 <em>g t</em> )
<em>t</em> = 0 or (20 m/s) sin(40º) - 1/2 <em>g t</em> = 0
The first time refers to where the ball is initially launched, so we omit that solution.
(20 m/s) sin(40º) = 1/2 <em>g t</em>
<em>t</em> = (40 m/s) sin(40º) / <em>g</em>
<em>t</em> ≈ 2.6 s
(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration <em>g</em>. So
0² - ((20 m/s) sin(40º))² = 2 (-<em>g</em>) <em>y</em>
where <em>y</em> in this equation refers to the maximum height of the ball. Solve for <em>y</em> :
<em>y</em> = ((20 m/s) sin(40º))² / (2<em>g</em>)
<em>y</em> ≈ 8.4 m
Answer:
Here ya gooooooooooooooo
Explanation:
sefamchsgaevfdkahsgevfjahgswevfjahsgefvjashgvf
Answer:
C. Plant A orbits its star faster than Plant B
Explanation:
Did it on study island