Answer:
a) p₀ = 1.2 kg m / s, b) p_f = 1.2 kg m / s, c) θ = 12.36, d) v_{2f} = 1.278 m/s
Explanation:
For this exercise we define a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved
a) the initial impulse is
p₀ = m v₁₀ + 0
p₀ = 0.6 2
p₀ = 1.2 kg m / s
b) as the system is isolated, the moment is conserved so
p_f = 1.2 kg m / s
we define a reference system where the x-axis coincides with the initial movement of the cue ball
we write the final moment for each axis
X axis
p₀ₓ = 1.2 kg m / s
p_{fx} = m v1f cos 20 + m v2f cos θ
p₀ = p_f
1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ
1.2482 = v_{2f} cos θ
Y axis
p_{oy} = 0
p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ
0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ
0.2736 = v_{2f} sin θ
we write our system of equations
0.2736 = v_{2f} sin θ
1.2482 = v_{2f} cos θ
divide to solve
0.219 = tan θ
θ = tan⁻¹ 0.21919
θ = 12.36
let's look for speed
0.2736 = v_{2f} sin θ
v_{2f} = 0.2736 / sin 12.36
v_{2f} = 1.278 m / s
The answers are to small to see.
Answer:
528 liter.
Explanation:
Volume of the tank(cuboid) = l*b*h
But volume of the water = l*b*h
Where
l= length of the tank
b = width of the tank
h = the length from the bottom of the tank,
3.55 in to m,
0.09017m
Length of the water in the tank = 0.570 - 0.09017
= 0.47983 m.
Volume = 0.47983*0.710*1.55
= 0.528 m3.
1 m3 = 1000 liter.
0.528 m3 = 0.528*1000
= 528 liter
The metals will start to rust lol. i think. because this messes up how the metals conduct the flow of the electricity.
A scientific law is the simple mathematical expression of the relationship involved. A principle is the same relationship expressed in words. A theory is the explanation of the facts that make up the relationship.