Answer:
1.68 × 10²³ Molecules
Explanation:
As we know that 1 mole of any substance contains exactly 6.022 × 10²³ particles which is also called as Avogadro's Number. So in order to calculate the number of particles (molecules) contained by 0.280 moles of Br₂, we will use following relation,
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Solving for Number of Molecules,
Number of Molecules = Moles × 6.022 × 10²³ Molecules.mol⁻¹
Putting values,
Number of Molecules = 0.280 mol × 6.022 × 10²³ Molecules.mol⁻¹
Number of Molecules = 1.68 × 10²³ Molecules
Hence,
There are 1.68 × 10²³ Molecules present in 0.280 moles of Br₂.
Answer:
2 half lives.
Explanation:
Suppose there are 100g of parent isotope at the start.
After 1 half-life there will be 50g of parent and 50g of daughter isotope.
After another half life there is 25 g of parent and 75g of daughter isotope.
The buoyant force is the upward force or thrust...Simply, consider immersing your hand into a bucket of water. What happens to it? It raises (a little). The raising is due to the buoyant force. Basically it is the upward force/thrust that acts on any object immersed into a fluid. Hence why things float when out in water. Hope this helped!!
Explanation:
The enzyme 's active site binds to the substrate. Increasing the temperature generally increases the rate of a reaction, but dramatic changes in temperature and pH can denature an enzyme, thereby abolishing its action as a catalyst. ... When an enzyme binds its substrate it forms an enzyme-substrate complex.
- friend,please mark my answer in brainliest answers
- friend,please follow me
- friend,please thanks this answer
- friend,please vote it 5 star