Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!
(I know this is late so hopefully other people find it helpful)
<u>Answer</u>: Solid Cu
Since this is a <u>voltaic cell</u>:
<u>Copper</u> is the cathode, therefore having a positive charge.
<u>Zinc</u> is the anode, therefore having a negative charge.
(Also, I took the exam and it's correct; good luck everyone!)
Answer:
Transition Element
Explanation:
Transition elements are defined as those elements which can form at least one stable ion and has partially filled d-orbitals. They are also characterized by forming complex compounds and having different oxidation states for a single metal element.
Transition metals are present between the metals and the non metals in the periodic table occupying groups from 3 to 12. There general electronic configuration is as follow,
(n-1)d
¹⁻¹⁰ns
¹⁻²
The general configuration shows that for a given metal, the d sublevel will be in lower energy level as compared to corresponding s sublevel. For example,
Scandium is present in fourth period hence, its s sublevel is present in 4rth energy level so its d sublevel will be present in 3rd energy level respectively.
Hence, we can conclude that for transition metals the electron are present in highest occupied s sublevel and a nearby d sublevel
.
Answer:
A salt bridge refers to a device used to form an electrochemical cell by providing a means to support the free flow of ions between the oxidation and reduction half-cell components. A salt bridge facilitates corrosion because corrosive reactions typically occur in the presence of electrochemical cells.
Explanation:
Taking into account the definition of molarity, the concentration of the solution is 0.855
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>Molarity of NaCl</h3>
In this case, you have:
- number of moles of NaCl=
1.71 moles (being 58.45 g/mole the molar mass of NaCl) - volume 2 L
Replacing in the definition of molarity:

Solving:
Molarity= 0.855 
Finally, the concentration of the solution is 0.855
.
Learn more about molarity:
<u>brainly.com/question/9324116</u>
<u>brainly.com/question/10608366</u>
<u>brainly.com/question/7429224</u>