Their locations can vary depending on the molecule they are associated with but they are usually in a "cloud " that is on the outside of an atom/molecule and if the atom is unstable the electrons tend to be located farther away from the atom.
Answer:
The correct answer is 25 mL graduated cylinder (it should be used in all the cases)
Explanation:
In order to measure 25.00 ml sample of a solution it should be used a 25 mL graduated cylinder, as it is previously and properly calibrated. The other laboratory glassware, beaker and erlenmeyer, have graduations which are approximate, so they are used when exact volumes are not needed.
ii) graduated cylinder has the least uncertainly. It is more accurate than a beaker or erlenmeyer (to within 1%)
iii) A 25 mL graduated cylinder should be used because it is the most accurate lab glassware (between those were mentioned: beaker, erlenmeyer).
Answer:
Hope this helps
Explanation:
https://seagrant.whoi.edu/wp-content/uploads/2018/05/ESTIMATING-POPULATION-SIZE-1.pdf
Answer:
the volume occupied by 3.0 g of the gas is 16.8 L.
Explanation:
Given;
initial reacting mass of the helium gas, m₁ = 4.0 g
volume occupied by the helium gas, V = 22.4 L
pressure of the gas, P = 1 .0 atm
temperature of the gas, T = 0⁰C = 273 K
atomic mass of helium gas, M = 4.0 g/mol
initial number of moles of the gas is calculated as follows;

The number of moles of the gas when the reacting mass is 3.0 g;
m₂ = 3.0 g

The volume of the gas at 0.75 mol is determined using ideal gas law;
PV = nRT

Therefore, the volume occupied by 3.0 g of the gas is 16.8 L.
well, yes it will continue to swing but not forever. it will just a long time but eventually stop. the reason is because of the air resistance which will continue to damp the motion until the bob stops