The most likely answer is the boiling point and freezing point of water. The Celsius scale starts at the freezing point of water (0°C) and than scaled so that 100°C fell on the boiling point of water.
I hope this helps. Let me know if anything is unclear.
Answer:
B) Symmetrical and nonpolar
Step-by-step explanation:
The formula is H-C≡C-H.
Each C atom has <em>two</em> electron regions, so VSEPR theory predicts a <em>linear molecular geometry</em> (see image below).
The molecule is symmetrical, because the green line divides the molecule into two halves that are mirror images of each other.
The C-H bonds are slightly polar, because C is more electronegative than H (µ ≈ 0.4 D).
The C atoms are partially negative (red), while the H atoms are partially positive (blue).
However, the two C-H bond dipoles point in <em>opposite directions</em>, so they cancel each other. The molecule has <em>no net dipole moment.</em>
Acetylene is nonpolar.
Answer:
Mendel's gene involved in pea color decides whether the chlorophyll in the pea will be broken down or degraded. When this gene isn't working, the chlorophyll stays around and the pea is green. So in this case the recessive trait is indeed due to a broken gene.
Explanation:
Answer:
1.52 M
Explanation:
Molarity of a solution is calculated as follows:
Molarity = number of moles (n) ÷ volume (V)
Based on the information given in this question,
Volume of soda (V) = 9.13 L
number of moles = 13.83 mol
Molarity = 13.83 ÷ 9.13
Molarity = 1.52 M
Explanation:
The solution of the lactic acd and sodium lactate is referred to as a buffer solution.
A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. In this case, the weak acid is the lactic acid and the conjugate base is the sodium lactate.
Buffer solutions are generally known to resist change in pH values.
When a strong base (in this case, NaOH) is added to the buffer, the lactic acid will give up its H+ in order to transform the base (OH-) into water (H2O) and the conjugate base, so we have:
HA + OH- → A- + H2O.
Since the added OH- is consumed by this reaction, the pH will change only slightly.
The NaOH reacts with the weak acid present in the buffer sollution.