This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
As the gas is heated, the particles will begin to move faster. Likewise if you start to cool a gas, the particles will move slower. Because the gas remains at a constant pressure and volume, the particles cannot spread out so they simply move around the container even faster.
Hope this helps :)
Critical Thinking Questions
1. Why do you think forensic scientists are so careful that the tests they do are sensitive, reproducible, and specific? What might happen if they were less careful about this?
They have to be careful to ensure as much accuracy as possible.
2.Which type of evidence do you think is most useful in an investigation? Why?
Physical evidence would probably be most important because it is the best way to connect someone directly with that crime.
3.Why do you think that forensic scientists continue to look for class characteristics given their limitations?
Class characteristics are good in court because it provides details of different aspects of the crime.
If you are operating a power driven vessel that is underway in condition of restricted visibility, you are expected to do the following: sound prolonged blasts every two minutes. If the vessel is underway but is not moving, it is expected to sound two prolonged blast every two minutes. When one hears any of the signal above, one is expected to reduce speed to the minimum that is needed to keep on course.