Explanation:
The water molecules begins to leave their fixed position and begins to move as the temperature increases.
When ice melts, it undergoes a state change from solid to liquid and with increasing temperature becomes a gas.
- The basis for this is the increasing movement of the molecules of the water as it transitions from one phase to another.
- In the ice, the molecules are locked and fixed in the lattice
- As the temperature increases, the average kinetic energy of the particles rises.
- This makes the structure of the ice to collapse and forms liquids.
- By the virtue of this, they flow and move over one another
- With increasing temperature, the bonds are broken and vapor forms
Answer:
Pinhole Projection
Explanation:
You will get a great view if you project a sunlight coming thrugh a small hole onto a viewing card enclosed in a long box. The smaller the pinhole, the sharper the image
Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N
Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
Answer:
Weight and Mass !!!!!!
Explanation:
Galileo discovered that objects that are more dense, or have more mass, fall at a faster rate than less dense objects, due to this air resistance. A feather and brick dropped together. Air resistance causes the feather to fall more slowly.