Positive charge you gave the lines pointing away, negative charge is pointing toward. Don’t have a photo so I can’t fill in the blanks BUT I can tell you the logic
Column A: x-axis, input, domain
Column B: y-axis, output, range
Those are other ways to describe them
hope i helped:)
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
Answer:
Please find the answer in the explanation
Explanation:
1.) How far is Object Z from the origin at t = 3 seconds
The distance of the object Z from the origin will be the slope of the graph.
Slope = 4/2 = 2m
2.) Which object takes the least time to reach a position 4 meters from the origin ?
According to the graph given to the question above, object Z has the list time which is 2 seconds since object X does not start from the origin.
3.) Which object is farthest from the origin at t = 2 seconds?
The correct answer is still object Z because it has the highest slope.
Answer: A) mass on earth surface = 5.91kg
B) mass on surface of jupiter = 5.91kg
C) weight on surface of jupiter = 10.697N
Explanation:
The relationship between weight (W), mass (m) and acceleration due gravity (g) is given below
W=mg
From the question, g= 9.8m/s² and weight on the surface on the earth is 58N
A) The mass of watermelon on earth is
m = 58/ 9.8 = 5.91kg
B) the mass of the watermelon on jupiter is 5.91kg.
You will notice this is the same as the mass of watermelon on earth and that is so because mass is a scalar quantity that does not depends on the distance away from the center of the earth (unlike weight which is a vector) thus making it constant all through any location.
C) mass of watermelon is 5.91kg, g=9.8m/s² weight of watermelon on jupiter is given below as
W = mg
W = 5.91 x 9.8
= 10.697N.