At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
The melting point is the temperature at which a substance passes from solid to liquid. Below the melting point, a substance is in the solid state. Above the melting point, a substance is in the liquid or gas state.
The boiling point is the temperature at which a substance passes from liquid to gas. Below the boiling point, a substance is solid or liquid. Above the boiling point, a substance is in the gas state.
At -25 °C, methanol is above the melting point (-97.6 °C) and below the boiling point (64.7 °C). Thus, it is in the liquid state.
At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
You can learn more about the melting and boiling points here: brainly.com/question/5753603?referrer=searchResults
The total kinetic energy of the gas sample is 3.3 KJ
<h3>What is kinetic energy? </h3>
This is the energy possessed by an object in motion. Mathematically, it can be expressed as:
KE = ½mv²
Where
- KE is the kinetic energy
- m is the mass
- v is the velocity
<h3>How to determine the mass of the fluorine gas</h3>
- Molar mass of fluorine gas = 38 g/mol
- Mole of fluorine gas = 1 mole
- Mass of fluorine gas = ?
Mass = mole × molar mass
Mass of fluorine gas = 1 × 38
Mass of fluorine gas = 38 g
<h3>How to determine the KE of the gas sample</h3>
- Mass (m) = 38 g = 38 / 1000 = 0.038 Kg
- Velocity (v) = 415 m/s
- Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.038 × 415²
KE = 3272.275 J
Divide by 1000 to express in kilojoule
KE = 3272.275 / 1000
KE = 3.3 KJ
Learn more about energy:
brainly.com/question/10703928
#SPJ1
This answer is based on the electron configuration.
And you can use Aufbau's rule to predict the atomic number of the next elements.
Radon, Rn is the element number 86.
Following Aufbau's rules, the electron configuration of Rn is: [Xe] 6s2 4f14 5d10 6p6. This means that you are suming 2 + 14 + 10 + 6 = 32 electrons with respect to the element Xe.
You can verity that the atomic number of Xe is 54, so when you add 32 you get 54 + 32 = 86, which is the atomic number of Rn.
Again, as per Aufbau's rules, the next element of the same group or period is when the 6 electrons of the 7p orbital are filled. For that, they have to pass 32 elements whose orbitals are:
7s2 5f14 6d10 7p6: count the electrons added: 2 + 14 + 10 + 6 = 32, and that is why the next element wil have atomic number 86 + 32 = 118.
Now, when you go for a new series, you find a new type of orbital, the g orbital, for which the model predict there are 18 electrons to fill.
So the next element of the group will have ; 2 + 18 + 14 + 10 + 6 = 50 electrons, which means that the atomic number of this, not yet discovered element, has atomic number 118 + 50 = 168.
By the way the element with atomic number 118 was already discovdered at its symbol is Og. You can search that information in internet.
Answers: 118 and 168
The answer to this is solved through stochiometry: the answer is this: 0.0833mol