<span>absorbed, radiated
Hope this helps. </span>
Ar (argon) has 18 electrons
Cl- would give you 18 electrons
F- would give you 10 electrons
Li+ would give you 2 electrons
Na+ would give you 10 electrons
Cl- would be the correct answer
Na⁺,SO₄²⁻ is the answer
<h3>Further explanation
</h3>
An ion is an atom or molecule that has a net electrical charge. There are many ions, one of them are sodium ion and sulfate ion.
SO₄²⁻ or Sulfate is a naturally occurring polyatomic ion that consist of a central sulfur atom surrounded by four oxygen atoms with occured widely in everyday life. Sodium ions are important for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions.
Whereas Na⁺ or Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sulfate ion is a very weak base. Therefore sulfate ion undergoes negligible hydrolysis in aqueous solution.
Enter the symbol of a sodium ion, Na⁺, followed by the formula of a sulfate ion, SO₄²⁻. Separate the ions with a comma only—spaces are not allowed. Express your answers as ions separated by a comma. Therefore the answer is: Na⁺,SO₄²⁻
Hope it helps!
<h3>Learn more</h3>
- Learn more about sodium ion brainly.com/question/6839866
- Learn more about sulfate ion brainly.com/question/2763823
- Learn more about ions brainly.com/question/11852357
<h3>Answer details</h3>
Grade: 9
Subject: Chemistry
Chapter: Introduction to Mastering Chemistry
Keywords: sodium ion, sulfate ion, ions, Chemistry, symbol
Answer:
A.
Explanation:
The <u>tertiary structure </u>of proteins is related to the interactions between the amino acids of the <u>primary structure</u>. Thus, these interactions give it a specific three-dimensional configuration which is very sensitive to <u>functionality</u>.
For example, <u>allosteric inhibitions</u> are related to this concept. When the <u>inhibitor</u> changes the tertiary structure of the protein it loses all <u>activity</u> and for the catalysis of the reaction.
Thus, the primary structure (which is related to the specific <u>sequence of amino acids</u>) will determine the tertiary structure since the chain folds will be a consequence of<u> intra-amino acid interactions</u>.