1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
13

Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg

e toy rocket to the back of a sled and take the modified sled to a large, flat, snowy field. You ignite the rocket and observe that the sled accelerates from rest in the forward direction at a rate of 14.5 m/s2 for a time period of 3.10 s. After this time period, the rocket engine abruptly shuts off, and the sled subsequently undergoes a constant backward acceleration due to friction of 5.65 m/s2.
After the rocket turns off, how much time does it take for the sled to come to a stop?time: ____sBy the time the sled finally comes to a rest, how far has it traveled from its starting point?distance traveled: ____m
Physics
1 answer:
IRINA_888 [86]3 years ago
7 0

Answer:

Time : <u>7.96 s</u>

Distance Traveled : <u>357.8 m</u>  

Explanation:

In order to solve this problem, we first consider the accelerated motion of rocket. We will be using the subscript 1 for accelerated motion.

So, for accelerated motion, we have:

Acceleration = a₁ = 14.5 m/s²

Time Period = t₁ = 3.1 s

Initial Velocity = Vi₁ = 0 m/s    (Since, it starts from rest)

Final Velocity = Vf₁

Distance covered by sled during acceleration motion = s₁

Now, using 1st equation of motion:

Vf₁ = Vi₁ + (a₁)(t₁)

Vf₁ = 0 m/s + (14.5 m/s²)(3.1 s)

Vf₁ = 44.95 m/s

Now, using 2nd equation of motion:

s₁ = (Vi₁)(t) + (0.5)(a₁)(t₁)

s₁ = (0 m/s)(3.1 s) + (0.5)(14.5 m/s²)(3.1 s)

s₁ = 22.5 m

Now, we first consider the decelerated motion of rocket. We will be using the subscript 2 for decelerated motion.

So, for accelerated motion, we have:

Deceleration = a₂ = - 5.65 m/s²

Time Period = t₂ = ?

Initial Velocity = Vi₂ = Vf₁ = 44.95 m/s    (Since, decelerate motion starts, where accelerated motion ends)

Final Velocity = Vf₂ = 0 m/s    (Since, rocket will eventually stop)

Distance covered by sled during deceleration motion = s₂

Now, using 1st equation of motion:

Vf₂ = Vi₂ + (a₂)(t₂)

0 m/s = 44.95 m/s + (- 5.65 m/s²)(t₂)

t₂ = (44.95 m/s)/(5.65 m/s²)

<u>t₂ = 7.96 s</u>

Now, using 2nd equation of motion:

s₂ = (Vi₂)(t₂) + (0.5)(a₂)(t₂)

s₂ = (44.95 m/s)(7.96 s) + (0.5)(- 5.65 m/s²)(7.96 s)

s₂ = 357.8 m - 22.5 m

s₂ = 335.3 m

Thus, the total distance covered by sled will be:

Total Dustance = S = s₁ + s₂

S = 22.5 m + 335.3 m

<u>S = 357.8 m</u>

You might be interested in
If the man on the left pulls on the object with a force of 500 N and the man on the right pulls on the object with a force of 75
Igoryamba
Force is a vector quantity
so pulling from opposite side will be negative
so
750+(-500)= 250N
C is the right answer
becauseause the man on the right applies greater force.
3 0
3 years ago
A 1.0-kg block of aluminum is at a temperature of 50 Celsius. How much thermal energy will it lose when it’s temperature is redu
Ipatiy [6.2K]

Answer:

The lose of thermal energy is, Q = 22500 J

Explanation:

Given data,

The mass of aluminium block, m = 1.0 kg

The initial temperature of block, T = 50° C

The final temperature of the block, T' = 25° C

The change in temperature, ΔT = 50° C - 25° C

                                                     = 25° C

The specific heat capacity of aluminium, c = 900  J/kg°C

The formula for thermal energy,

                             <em>Q = mcΔT</em>

                                 = 1.0 x 900 x 25

                                 = 22500 J

Hence, the lose of thermal energy is, Q = 22500 J

7 0
3 years ago
Coherent light of frequency 6.37×1014 Hz passes through two thin slits and falls on a screen 88.0 cm away. You observe that the
IgorC [24]

Answer:

The distance between the two slits is 40.11 μm.

Explanation:

Given that,

Frequency f= 6.37\times10^{14}\ Hz

Distance of the screen l = 88.0 cm

Position of the third order y =3.10 cm

We need to calculate the wavelength

Using formula of wavelength

\lambda=\dfrac{c}{f}

where, c = speed of light

f = frequency

Put the value into the formula

\lambda=\dfrac{3\times10^{8}}{6.37\times10^{14}}

\lambda=471\ nm

We need to calculate the distance between the two slits

m\times \lambda=d\sin\theta

d =\dfrac{m\times\lambda}{\sin\theta}

Where, m = number of fringe

d = distance between the two slits

Here, \sin\theta =\dfrac{y}{l}

Put the value into the formula

d=\dfrac{3\times471\times10^{-9}\times88.0\times10^{-2}}{3.10\times10^{-2}}

d=40.11\times10^{-6}\ m

d = 40.11\ \mu m

Hence, The distance between the two slits is 40.11 μm.

7 0
3 years ago
A model plane has a mass of 0.75 kg and is flying 12 m above the ground
Grace [21]

Answer:

Option C. 210 J.

Explanation:

From the question given above, the following data were obtained:

Mass (m) = 0.75 Kg

Height (h) = 12 m

Velocity (v) = 18 m/s

Acceleration due to gravity (g) = 9.8 m/s²

Total Mechanical energy (ME) =?

Next, we shall determine the potential energy of the plane. This can be obtained as follow:

Mass (m) = 0.75 Kg

Height (h) = 12 m

Acceleration due to gravity (g) = 9.8 m/s²

Potential energy (PE) =?

PE = mgh

PE = 0.75 × 9.8 × 12

PE = 88.2 J

Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:

Mass (m) = 0.75 Kg

Velocity (v) = 18 m/s

Kinetic energy (KE) =?

KE = ½mv²

KE = ½ × 0.75 × 18²

KE = ½ × 0.75 × 324

KE = 121.5 J

Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:

Potential energy (PE) = 88.2 J

Kinetic energy (KE) = 121.5 J

Total Mechanical energy (ME) =?

ME = PE + KE

ME = 88.2 + 121.5

ME = 209.7 J

ME ≈ 210 J

Therefore, the total mechanical energy of the plane is 210 J.

8 0
2 years ago
Please Help Fast!!!
S_A_V [24]
Aluminum has an atomic number of 13,  so it has 13 protons. In its natural state, it does not have a charge,  so it has an equal amount of electrons, 13. The atomic mass of aluminum is approximately 27. Since protons and neutrons make up that mass, and each of the particles are around 1 atomic mass unit, if there are 13 protons, then there are 27-13 neutrons, or 14 neutrons. So the first answer choice is correct.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Why is it important for small mammals to hear well
    7·1 answer
  • Si tu velocidad al caminar es 0,3 m/s. Determina el tiempo que demorarias en llegar al sol en horas (REALIZAR TRANSFORMACIÓN DE
    5·1 answer
  • 1.D 2.A 3.A 4.im not sure please help 5.false One light bulb in a string of lights goes out. This causes all of the other lights
    7·1 answer
  • A car is traveling 80 km/h if the car's speed remains constant how far will it have traveled in 3 hours
    6·1 answer
  • NEED HELP!!<br><br> To complete its outermost shell, oxygen will most likely ____
    7·2 answers
  • 1) The "Ring of Fire" is an area along the edge of the Pacific Ocean with many volcanoes. Most of
    15·1 answer
  • A toy rocket is shot straight up into the air with an initial speed of 45.0 m/s how long does it takes for the rocket to reach i
    12·2 answers
  • How many meters per second is a wave going if it travels a distance of one mile in 0.0012 hours
    8·1 answer
  • Highlight two factors which shows that heat from the sun does not reach the earth surface by convection
    7·1 answer
  • Between the ball and the player's head, there are forces. Which of Newton's laws does this represent? Support your choice.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!