Answer:
40.0⁰
Explanation:
The formula for calculating the magnetic flux is expressed as:
where:
is the magnetic flux
B is the magnetic field
A is the cross sectional area
is the angle that the normal to the plane of the loop make with the direction of the magnetic field.
Given
A = 0.250m²
B = 0.020T
= 3.83 × 10⁻³T· m²
3.83 × 10⁻³ = 0.020*0.250cosθ
3.83 × 10⁻³ = 0.005cosθ
cosθ = 0.00383/0.005
cosθ = 0.766
θ = cos⁻¹0.766
θ = 40.0⁰
<em>Hence the angle normal to the plane of the loop make with the direction of the magnetic field is 40.0⁰</em>
Answer:
The angle of banked curve that makes the reliance on friction unnecessary is

Explanation:
In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.
The only force in the direction of radius is the sine component of the weight of the car

The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.
Newton’s Second Law states that

Also, the car is making a circular motion:

Combining the equations:

Finally the angle is

¿El salario es un costo fijo o variable?
Los salarios anuales son costos fijos, pero otros tipos de compensación, como comisiones o horas extraordinarias, son costos variables.
Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)
Answer:
You would have to give better explanation on subject.
Explanation: